首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
猫作为实验动物在医学研究中占有越来越重要的地位,尤其是对于神经学、生理学和毒理学的研究。与啮齿类动物相比,猫的生理学特性、解剖学特点、病理及生化反应,更接近于人类;与灵长类动物相比,具有经济、资源丰富等优点。因此,猫在人类疾病动物模型方面有广泛的应用前景。本文主要回顾和总结了近年来猫在眼科、神经系统、肿瘤等领域作为人类疾病动物模型的制作方法与研究概况。  相似文献   

2.
李洁  韩俊 《病毒学报》2021,37(6):1440-1447
目前国内多个机构已建立了BSL-3实验室,这些实验室能够满足细胞水平和动物水平的病原微生物实验活动.医学病毒学生物安全三级动物实验室(ABSL-3)可分为小动物实验室和中(大)动物实验室.小动物实验室主要开展小鼠、大鼠、仓鼠等啮齿类动物的感染性实验活动;中(大)动物实验室主要开展小型猪、猴等实验.动物三级实验室特别是开展中(大)动物实验的高等级实验室,其实验室布局,设备设施,管理体系及流程会有很大的差别.本文从使用者的角度,通过所在机构医学病毒学生物安全三级动物实验室(ABSL-3)的建设与实践,对于筹备和建立以及使用过程中的所面对的问题以及应对,进行了提炼和归纳,分析和探讨,旨在为建设和使用医学病毒学高致病性生物安全三级动物实验室提供借鉴和参考.  相似文献   

3.
新水缸潜水实验(novel tank diving test)是专门针对模式动物斑马鱼或其他小型鱼类的焦虑行为研究设计的评价范式,是介于活体和细胞测定之间的药物筛选模型。该模型从小鼠迷宫实验模型发展而来,在行为测试的便捷性上具有一定优势。斑马鱼与人类具有较高的基因同源性,药物介导的斑马鱼焦虑和攻击行为与其内分泌系统中下丘脑-垂体-肾间腺(HPI)轴密切相关,类似于人体下丘脑-垂体-肾上腺(HPA)轴的作用。因此该模式对人类焦虑行为的研究具有重要的指导意义。总的来说,新水缸潜水实验是一种高效、可靠的高通量行为筛选模型,主要应用于动物社会性、成瘾性、睡眠、学习与记忆等研究领域。本文综述了过去15年间,新水缸潜水模型从形成雏形到不断完善,最后广泛应用于各种场景,从模型起源、测定参数、用途、存在问题和未来发展趋势等5个方面进行综述,并与明/暗水缸实验进行比较分析,以期扩宽斑马鱼焦虑及应激行为评价实验的研究范畴和应用范围。  相似文献   

4.
斑马鱼在人类发育学研究、疾病动物模型以及生命科学多领域中扮演着越来越重要的角色。作为新兴的实验动物资源,标准化已经成为斑马鱼使用中亟待解决的技术瓶颈和研究发展的必然趋势。本文综述了斑马鱼的研究历史,生物学特性以及质量标准化的研究现状,并对斑马鱼作为实验动物在标准化研究过程中面临的主要问题做了探讨,以期为斑马鱼实验动物资源标准化研究提供有益的参考。  相似文献   

5.
本文结合作者科研工作实际和相关文献资料,对犬、猫、猴等实验动物犬瘟热、犬细小病毒病、猫瘟热、布病、钩体病及弓形虫病等重要疫病及其防控研究进行了概述.  相似文献   

6.
神经退行性疾病的主要临床症状表现为记忆丧失、认知障碍、运动能力丧失和感觉缺失等。随着人口老龄化的加剧,神经退行性疾病的发病率也逐渐上升。目前,人们对这类疾病的认知尚浅,因此,对应的治疗和干预方法也很紧缺。动物模型在神经退行性疾病中的广泛应用为我们提供了良好的实验材料,为研究发病机制及治疗方式提供了重要平台。该文总结了在阿尔兹海默症、帕金森症、亨廷顿病以及肌萎缩侧索硬化症这四种常见神经退行性疾病的相关研究中成功构建的动物模型,涉及动物包括秀丽隐杆线虫、黑腹果蝇、斑马鱼、啮齿类动物、小型猪和非人灵长类动物。  相似文献   

7.
较小鼠等啮齿类动物而言,猴和小型猪等大型实验动物在亲缘关系上与人类更为接近,在解剖、生理生化代谢及疾病发病机制等多方面与人类更接近,使它们在复制人类疾病模型,研究疾病发病机制和新药研发等中有无可替代的应用。而制备遗传工程大动物可以更深入地解析人类疾病,并可为器官移植和新药研发提供更充分的实验材料。基于慢病毒介导的转基因方法近几年已越来越多地被用来制备遗传工程猴和小型猪。与传统的原核显微注射方法和体细胞核移植法相比,慢病毒介导的转基因方法转基因效率高,操作更简单。因此,构筑基于慢病毒介导的转基因方法制备遗传工程猴和小型猪的技术平台将对生物医学研究产生巨大推动作用。  相似文献   

8.
心脏发育是一个复杂的过程.在脊椎动物和无脊椎动物果蝇中驱动早期心脏分化的基因具有惊人的相似性.以果蝇、斑马鱼、小鼠等作为模式动物,以心脏的发育过程为主线,探讨了心脏发育的基因调控的研究进展.  相似文献   

9.
斑马鱼:在生命科学中畅游   总被引:31,自引:3,他引:28  
模式动物是生命科学研究的重要材料,为生命科学的发展做出了重要的贡献。自20世纪90年代初以来,斑马鱼因其多方面的优点已成为模式动物家族中重要的一员,受到越来越多的重视和利用。目前,斑马鱼被广泛地用于发育生物学、遗传学、肿瘤学、药物学、毒理与环保等方面的研究,不断涌现新的研究成果。  相似文献   

10.
封面说明     
《遗传》2014,(9)
<正>实验动物在人类疾病研究中发挥着重要作用。与啮齿类动物相比,小型猪在解剖、生理学和免疫学特征与人类更为相似,是人类比较医学中更适合的实验动物材料.在TALENs和手工克隆技术的结合,以其效率高、成本低、高通量等优点。  相似文献   

11.
Recent advances in bioengineering technologies have made it possible to collect high-quality reproducible data quantitatively in a wide range of laboratory animal species, including rodents. Several of these technologies are incorporated into a plan called Miniaturization, which aims to design, develop, and maintain rodent animal models to study the pathophysiology and therapy of human diseases. Laser Doppler flowmetry, digital sonomicrometry, bioelectrical impedance, and microdialysis are some of the most widely used methods under the plan because they cause minimal pain and distress, reduce the number of animals used in biomedical research, and allow chronic, nonterminal assessment of physiological parameters in rodents. An overview of each of these technologies and their major applications in rodents used for biomedical research is provided.  相似文献   

12.
An understanding of the origin of different body plans requires knowledge of how the genes and genetic pathways that control embryonic development have evolved. The Hox genes provide an appealing starting point for such studies because they play a well-understood causal role in the regionalization of the body plan of all bilaterally symmetric animals. Vertebrate evolution has been characterized by gene, and possibly genome, duplication events, which are believed to have provided raw genetic material for selection to act upon. It has recently been established that the Hox gene organization of ray-finned fishes, such as the zebrafish, differs dramatically from that of their lobe-finned relatives, a group that includes humans and all the other widely used vertebrate model systems. This unusual Hox gene organization of zebrafish is the result of a duplication event within the ray-finned fish lineage. Thus, teleosts, such as zebrafish, have more Hox genes arrayed over more clusters (or "complexes") than do tetrapod vertebrates. Here, I review our understanding of Hox cluster architecture in different vertebrates and consider the implications of gene duplication for Hox gene regulation and function and the evolution of different body plans.  相似文献   

13.
作为四大模式动物之一,斑马鱼(Danio rerio)广泛应用于胚胎学、发育生物学、毒理学、分子生物学等研究。但关于斑马鱼繁殖内分泌生理和环境毒理方面的研究少见报道,本文综述了近年来,在内分泌学方面以斑马鱼作为实验动物的研究概况。  相似文献   

14.
Light-induced retinal degeneration (LIRD) is commonly used in both rodents and zebrafish to damage rod and cone photoreceptors. In adult zebrafish, photoreceptor degeneration triggers Müller glial cells to re-enter the cell cycle and produce transient-amplifying progenitors. These progenitors continue to proliferate as they migrate to the damaged area, where they ultimately give rise to new photoreceptors. Currently, there are two widely-used LIRD paradigms, each of which results in varying degrees of photoreceptor loss and corresponding differences in the regeneration response. As more genetic and pharmacological tools are available to test the role of individual genes of interest during regeneration, there is a need to develop a robust LIRD paradigm. Here we describe a LIRD protocol that results in widespread and consistent loss of both rod and cone photoreceptors in which we have combined the use of two previously established LIRD techniques. Furthermore, this protocol can be extended for use in pigmented animals, which eliminates the need to maintain transgenic lines of interest on the albino background for LIRD studies.  相似文献   

15.
Although zebrafish are best known as a model for studies of development, there is now a growing role for the model in studies of the functional organization of the nervous system, including studies of a variety of sensory systems, central processing, and motor output. The zebrafish has much to offer for such work because of the unique combination of genetics, optical methods, and physiology it allows. Here I illustrate, using three examples, the broad range of avenues along which zebrafish can inform us about motor systems. The examples include efforts to understand the functional organization and evolution of spinal interneurons, the role of mutants in informing us about motor dysfunction and human disease, and the ability to use the special features of zebrafish to explore strategies to restore function after injury. The most important aspects of these studies are evident only when they are placed in a comparative context, so they serve to highlight the power of zebrafish in studies of the comparative biology of motor control.  相似文献   

16.
Teh C  Chong SW  Korzh V 《BioTechniques》2003,35(5):950-954
The zebrafish is widely used for functional studies of vertebrate genes. It is accessible to manipulations during all stages of embryogenesis because the embryo develops externally and is optically transparent. However, functional studies conducted on the zebrafish have been generally limited to the earliest phase of activity of the gene of interest, which is a limitation in studies of genes that are expressed at various stages of embryonic development. It is therefore necessary to develop methods that allow for the modulation of gene activity during later stages of zebrafish development while leaving earlier functions intact. We have successfully electroporated the green fluorescent protein (GFP) reporter gene into the neural tube of the zebrafish embryo in a unidirectional or bilateral manner. This approach can be used for the functional analysis of the late role of developmental genes in the neural tube of zebrafish embryo and larvae.  相似文献   

17.
The prevalence of obesity has increased rapidly during recent years and has reached epidemic proportions. As a result, the scientific community is interested in active biomolecules which are naturally present in plants and foodstuffs and may be useful in body weight management. In recent years, polyphenols have made up one of the most frequently studied groups among these molecules. Numerous studies have been carried out on animals to analyse the potential anti-obesity effects of resveratrol, a non-flavonoid polyphenol, and a general consensus concerning the body-fat-lowering effect of this compound exists. By contrast, studies in humans have been few so far. Moreover, in these studies, the effectiveness of resveratrol is low. The aims of the present review are to summarize the results reported so far on this topic and to justify the differences observed between animals and humans. It seems that the reduced response to resveratrol in humans cannot be attributed to the use of lower doses in humans because the doses that induce body-fat-lowering effects in rodents are in the same range as those used in human studies. With regard to the experimental period length, treatments were longer in animal studies than in human studies. This can be one of the reasons contributing to the reduced responses observed in humans. Moreover, animals used in the reported studies are young while volunteers participating in human studies are adults, suggesting that resveratrol may be more efficient in young individuals. In addition to differences in the experimental designs, metabolic differences between animals and human cannot be discarded.  相似文献   

18.
Positron emission tomography (PET) neuroimaging and behavioral assays in rodents are widely used in neuroscience. PET gives insights into the molecular processes of neuronal communication, and behavioral methods analyze the actions that are associated with such processes. These methods have not been directly integrated, because PET studies in animals have until now required general anesthesia to immobilize the subject, which precludes behavioral studies. We present a method for imaging awake, behaving rats with PET that allows the simultaneous study of behavior. Key components include the 'rat conscious animal PET' or RatCAP, a miniature portable PET scanner that is mounted on the rat's head, a mobility system that allows considerable freedom of movement, radiotracer administration techniques and methods for quantifying behavior and correlating the two data sets. The simultaneity of the PET and behavioral data provides a multidimensional tool for studying the functions of different brain regions and their molecular constituents.  相似文献   

19.
Due to the clinical importance of hearing and balance disorders in man, model organisms such as the zebrafish have been used to study lateral line development and regeneration. The zebrafish is particularly attractive for such studies because of its rapid development time and its high regenerative capacity. To date, zebrafish studies of lateral line regeneration have mainly utilized fish of the embryonic and larval stages because of the lower number of neuromasts at these stages. This has made quantitative analysis of lateral line regeneration/and or development easier in the earlier developmental stages. Because many zebrafish models of neurological and non-neurological diseases are studied in the adult fish and not in the embryo/larvae, we focused on developing a quantitative lateral line regenerative assay in adult zebrafish so that an assay was available that could be applied to current adult zebrafish disease models. Building on previous studies by Van Trump et al.17 that described procedures for ablation of hair cells in adult Mexican blind cave fish and zebrafish (Danio rerio), our assay was designed to allow quantitative comparison between control and experimental groups. This was accomplished by developing a regenerative neuromast standard curve based on the percent of neuromast reappearance over a 24 hr time period following gentamicin-induced necrosis of hair cells in a defined region of the lateral line. The assay was also designed to allow extension of the analysis to the individual hair cell level when a higher level of resolution is required.  相似文献   

20.
Why we sleep remains one of the enduring unanswered questions in biology. At its core, sleep can be defined behaviorally as a homeostatically regulated state of reduced movement and sensory responsiveness. The cornerstone of sleep studies in terrestrial mammals, including humans, has been the measurement of coordinated changes in brain activity during sleep measured using the electroencephalogram (EEG). Yet among a diverse set of animals, these EEG sleep traits can vary widely and, in some cases, are absent, raising questions as to whether they define a universal, or even essential, feature of sleep. Over the past decade, behaviorally defined sleep-like states have been identified in a series of genetic model organisms, including fish, flies and worms. Genetic analyses in these systems are revealing a remarkable conservation in the underlying mechanisms controlling sleep behavior. Taken together, these studies suggest an ancient origin for sleep and raise the possibility that model organism genetics may reveal the molecular mechanisms that guide sleep and wake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号