首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sporophytic self-incompatibility of diploid Ipomoea trifida is controlled by a single multiallelic locus, the S-locus. To make a fine linkage map around the S-locus, AFLP (amplified restriction fragment length polymorphism) and AMF (AFLP-based mRNA fingerprinting) analyses were performed using bulked genomic DNA and mRNA, respectively, from several plants of each S-haplotype in a segregating population. Putative S-haplotype-specific fragments were obtained and subjected to RFLP analysis of genomic DNA to confirm genetic linkage to the S-locus. Eight DNA markers co-segregating with the S-haplotype were identified and mapped in close proximity to the S-locus. One of them, AAM-68, was the most tightly linked to the S-locus, because no recombinants were detected in the 873 plants of the segregating population analyzed. The S-locus region was defined to be within 1.25 cM in the linkage map. These markers are useful for positional cloning of the S-locus genes in Ipomoea.  相似文献   

3.
Sporophytic self-incompatibility (SSI) in the genus Ipomoea (Convolvulaceae) is controlled by a single polymorphic S locus. We have previously analyzed genomic sequences of an approximately 300 kb region spanning the S locus of the S 1 haplotype and characterized the genomic structure around this locus. Here, we further define the physical size of the S locus region by mapping recombination breakpoints, based on sequence analysis of PCR fragments amplified from the genomic DNA of recombinants. From the recombination analysis, the S locus of the S 1 haplotype was delimited to a 0.23 cM region of the linkage map, which corresponds to a maximum physical size of 212 kb. To analyze differences in genomic organization between S haplotypes, fosmid contigs spanning approximately 67 kb of the S 10 haplotype were sequenced. Comparison with the S 1 genomic sequence revealed that the S haplotype-specific divergent regions (SDRs) spanned 50.7 and 34.5 kb in the S 1 and S 10 haplotypes, respectively and that their flanking regions showed a high sequence similarity. In the sequenced region of the S 10 haplotype, five of the 12 predicted open reading frames (ORFs) were found to be located in the divergent region and showed co-linear organization of genes between the two S haplotypes. Based on the size of the SDRs, the physical size of the S locus was estimated to fall within the range 34–50 kb in Ipomoea.  相似文献   

4.
A spontaneously occurring self-compatible mutant has been identified in Ipomoea trifida, a species possessing sporophytic self-incompatibility controlled by a single multiallelic S locus. Analysis of the segregation of compatibility/incompatibility phenotypes in selfed and crossed progenies of the self-compatible mutant plant indicated that the self-compatibility trait was caused by a mutation at the S locus; the mutated S allele was therefore designated Sc. RFLP analysis of progeny plants segregating for the Sc allele using the SSP gene (a gene linked closely to the S locus of I. trifida) as a probe confirmed that the mutation was present at the S locus. Self-incompatibility responses were examined in F1 progenies obtained from crosses between the self-compatible mutant and self-incompatible plants homozygous for one of three S alleles, S 1 , S 3 and S 22 , where the dominance relationship is S 22 >S 1 >S 3 . All F1 progeny plants from crosses with S 22 and S 1 homozygotes were self-incompatible and exhibited the respective phenotypes of each self-incompatible parent (either S 22 or S 1 ) in both stigma and pollen. However, of the F1 progeny plants from the cross with the S 3 homozygote, those carrying the genotype ScS 3 were all self-compatible and cross-compatible as both female and male parents with the S 3 homozygote. These results indicate that the dominance relationship between the four S alleles is: S 22 >S 1 >Sc>S 3 and so reveal the unexpected finding that the mutated Sc allele is dominant over a functional S 3 allele. A possible explanation for this observation is that the gene product encoded by the Sc allele confers a dominant negative effect on the S 3 gene product. Received: 21 June 2000 / Accepted: 18 July 2000  相似文献   

5.
Self-incompatibility is a genetic mechanism enforcing cross-pollination in plants. Hazelnut (Corylus avellana L.) expresses the sporophytic type of self-incompatibility, for which the molecular genetic basis is characterized only in Brassica. The hypothesis that the hazelnut genome contains homologs of Brassica self-incompatibility genes was tested. The S-locus glycoprotein gene (SLG) and the kinase-encoding domain of the S-receptor kinase (SRK) gene of B. oleracea L. were used to probe blots of genomic DNA from six genotypes of hazelnut. Weak hybridization with the SLG probe was detected for all hazelnut genotypes tested; however, no hybridization was detected with PCR-generated probes corresponding to two conserved regions of the SLG gene. One of these PCR probes included the region of SLG encoding the 11 invariant cysteine residues that are an important structural feature of all S-family genes. The present evidence suggests that hazelnut DNA hybridizing to SLG differs significantly from the Brassica gene, and that the S-genes cloned from Brassica will not be useful for exploring self-incompatibility in hazelnut.  相似文献   

6.
Summary Tetraploid F1 hybrids between Ipomoea batatas, sweet potato (2n = 6x = ca. 90), and diploid (2n = 2x = 30) I. trifida (H. B. K.) Don. showed various degrees of fertility reduction. The present study aimed to clarify its causes by cytological analysis of meiotic chromosome behavior in the diploid and sweet potato parents and their tetraploid hybrids. The diploid parents showed exclusively 15 bivalents, and the sweet potato parents exhibited almost perfect chromosome pairing along with predominant multivalent formation. Their hybrids (2n = 4x= 57–63) formed 2.6–5.0 quadrivalents per cell, supporting the autotetraploid nature. The meiotic aberratios of the hybrids were characterized by the formation of univalents, micronuclei, and abnormal sporads (monad, dyad, triad, and polyad). The causes underlying these aberrations were attributed in part to the multivalent formation, and in part to a disturbance in the spindle function. Three hybrids showing serious meiotic aberrations were very low in fertility. The utilization of the sweet potato-diploid I. trifida hybrids for sweet potato improvement is described and, further, the role of interploidy hybridization in the study of the sweet potato evolution is discussed.  相似文献   

7.
Summary More than 28,000 pollinations were carried out between 5 Ipomoea batatas and 41 diploid I. trifida accessions of diverse origins to obtain 4x interspecific hybrids. From the resultant 730 seeds, 248 plants were finally obtained. Ploidy level determination of the progeny showed unexpected results: 52 individuals were hexaploid, 5 were pentaploid, 190 were tetraploid, as expected, and one was not determined. The existence of 5x and 6x progenies from 6x x 2x crosses not only confirmed the presence of 2n gametes but also their successful function in gene flow between ploidy levels and polyploidization within this genus. The progeny and their cultivated parents were planted in an observation field. The cultivated parents produced 0.49 kg/plant or less. Most 4x progenies did not produce storage roots or had very poor yields; nonetheless, and despite their cultivated parents' poor yields, 8 genotypes yielded between 0.81 and 1.50 kg/plant.A new scheme, using the 4x interspecific hybrids, is proposed for evaluating 2x and 4x wild accessions of the section Batatas to which the sweet potato belongs. Other possible uses of the 4x hybrids in breeding and genetics of the sweet potato are also discussed.  相似文献   

8.
9.
SGT1(suppressor of the G2 allele of skpl)是多种植物抗病基因介导的抗病信号途径中的重要元件.该研究利用RT-PCR和RACE方法克隆出甘薯近缘野生种三浅裂野牵牛的SGT1基因,命名为ItSGT1.该基因含有一个长度为1 087 bp的开放阅读框,编码361个氨基酸,分子量约为40.1 kD,等电点为5.05.Blast及多序列比对分析表明,该基因与其他植物中的SGT1具有较高的相似性,且具有SGT1蛋白典型的功能域结构,即TPR区、VR1区、CS区、VR2区和SGS区.Southern杂交结果显示,SGT1基因在三浅裂野牵牛基因组中是多拷贝基因.组织特异性表达分析表明,ItSGT1基因在三浅裂野牵牛的根、茎和叶中均有表达.  相似文献   

10.
Summary The frequency of aborted fruits and the changes and abnormalities that occur during the embryo development in intraspecific crosses of sweet-potato Ipomoea batatas (2n=6x=90) and interspecific crosses between I. batatas and I. trifida (2n=2x=30) were investigated in order to study the causes of the low seed production. Three genotypes of I. batatas and 18 genotypes of I. trifida were intermated. The frequency of aborted fruits was below 25% in the intraspecific crosses and over 90% in the interspecific crosses. Paraffin sections were used to examine the developmental stages of fruits and seeds. Embryos in different developmental stages were observed to determine the stage of abortion. These observations permitted the identification of developmental stages of embryo rescue in interspecific crosses. There were no significant differences in the frequency of embryo abortion before the early globular stage among female sweet-potato progenitors for the intraspecific and interspecific crosses. The frequency of the late occurrence of embryo abortion (when embryo abortion occurs after the pre-globular stage) was higher in interspecific crosses (19.1%) than in intraspecific crosses (5.5%). The frequency of the late occurrence of embryo abortion in interspecific crosses was higher at the globular stage (9.6%) than at the heart stage (4.3%). Providing that embryo rescue is conducted in interspecific crosses, the estimated number of potentially viable embryos could be increased: 30 times with embryos at the globular stage; 20 times with embryos at the heart stage; and 11 times if embryos at the torpedo stage were used for the rescue with respect to the seed set. The results suggested that the appropriate time for embryo rescue in interspecific crosses is at the globular stage. If embryos could be rescued at the globular stage, it would be possible to increase the number of surviving embryos up to 30 times in interspecific crosses and 0.02 times in intraspecific crosses with respect to natural conditions without embryo rescue.This research was initiated during sabbatical of M.I. at the Asian Vegetable Research and Development Center (AVRDC) in Taiwan  相似文献   

11.
Ipomoea trifida (H. B. K.) G. Don. is the most likely diploid ancestor of the hexaploid sweet potato, I. batatas (L.) Lam. To assist in analysis of the sweet potato genome, de novo whole-genome sequencing was performed with two lines of I. trifida, namely the selfed line Mx23Hm and the highly heterozygous line 0431-1, using the Illumina HiSeq platform. We classified the sequences thus obtained as either ‘core candidates’ (common to the two lines) or ‘line specific’. The total lengths of the assembled sequences of Mx23Hm (ITR_r1.0) was 513 Mb, while that of 0431-1 (ITRk_r1.0) was 712 Mb. Of the assembled sequences, 240 Mb (Mx23Hm) and 353 Mb (0431-1) were classified into core candidate sequences. A total of 62,407 (62.4 Mb) and 109,449 (87.2 Mb) putative genes were identified, respectively, in the genomes of Mx23Hm and 0431-1, of which 11,823 were derived from core sequences of Mx23Hm, while 28,831 were from the core candidate sequence of 0431-1. There were a total of 1,464,173 single-nucleotide polymorphisms and 16,682 copy number variations (CNVs) in the two assembled genomic sequences (under the condition of log2 ratio of >1 and CNV size >1,000 bases). The results presented here are expected to contribute to the progress of genomic and genetic studies of I. trifida, as well as studies of the sweet potato and the genus Ipomoea in general.  相似文献   

12.
13.
Brassica napus is an amphidiploid plant which is self-compatible even though it is derived from hybridisation of the self-incompatible species B. oleracea and B. campestris. Experiments were undertaken to establish if S-locus glycoprotein (SLG) genes exist in B. napus and whether these are expressed as in self-incompatible Brassica species. Two different stigma-specific cDNA sequences homologous to SLG genes were obtained from the B. napus cultivar Westar. One of these sequences, SLG WS1, displayed highest homology to class I SLG alleles, whereas the other, SLG WS2, showed greatest homology to class II SLG genes. Both were expressed at high levels in Westar stigmas following a developmental pattern typical of SLG genes in the self-incompatible diploids. We infer that they represent the endogenous SLG genes at the two homoeologous S-loci. The occurrence of normally expressed SLG genes and its relevance to the self-compatible phenotype of B. napus is discussed.  相似文献   

14.
15.
In Brassica, the S-locus glycoprotein (SLG) gene has been strongly implicated in the self-incompatibility reaction. Several alleles of this locus have been sequenced, and accordingly grouped as class I (corresponding to dominant S-alleles) and class II (recessive). We recently showed that a self-compatible (Sc) line of Brassica oleracea expressed a class II-like SLG (SLG-Sc) gene. Here, we report that the SLG-Sc glycoprotein is electrophoretically and immunochemically very similar to the recessive SLG-S15 glycoprotein, and is similarly expressed in stigmatic papillae. Moreover, by seed yield analysis, we observe that both alleles are associated with a self-compatibility response, in contrast with the other known recessive S haplotypes (S2 and S5). By genomic DNA blot analysis, we show the existence of molecular homologies between the Sc and S15 haplotypes, but demonstrate that they are not identical. On the other hand, we also report that the S2 haplotype expresses very low amounts of SLG glycoproteins, although it exhibits a self-incompatible phenotype. These results strongly question the precise role of the SLG gene in the molecular mechanisms that control the self-incompatibility reaction of Brassica.  相似文献   

16.
Self-compatible S-54 homozygotic plants were found in progenies of an F(1) hybrid cultivar in Chinese cabbage. Pollination tests revealed that this self-compatibility is controlled by the S locus and caused by the loss of the recognition function of the stigma. SRK, the gene for the recognition molecule in the stigma, was normally transcribed and translated in the self-compatible plants. The 1034-bp region in the receptor domain of SRK in the self-compatible plants was 100% identical to SLG in S-54, while that in self-incompatible S-54 homozygotic plants was 95.1% identical. These results suggest that the self-compatibility of the S-54 homozygotes is due to amino-acid changes caused by gene conversion from SLG to SRK.  相似文献   

17.
Ma YP  Fang XH  Chen F  Dai SL 《Plant cell reports》2008,27(4):647-654
FLO/LFY homologue genes were initially characterized as floral meristem identity genes and play a key role in flower development among diverse species. The inflorescence organization of chrysanthemum differs from typical dicotyledons such as Arabidopsis and Antirrhinum as clear sepals are absent, and instead, a pappus, a rudimentary sepal, is formed. To understand the mechanism of reproduction of chrysanthemum at the molecular level, DFL, a FLORICAULA/LEAFY homologous gene, was cloned from Dendranthema lavandulifolium, which is one of the original species of chrysanthemum. The DFL gene consists of a 1,236-bp open reading frame and encodes a putative protein of 412 amino acids, which is 63% identical to LFY and 70% to FLO. The expression patterns of DFL during the flower development were analyzed, and RT-PCR results showed that DFL was strongly expressed in the flower bud. In situ hybridization experiments showed that it is strongly expressed in the inflorescence bract, petal and stamen primordial tissues throughout the inflorescence development. Its expression signals were also detected in stems, leaf primordial tissues and developing inflorescence bracts.  相似文献   

18.
The yeast two-hybrid system was used to further characterize the interactions between the Brassica S receptor kinase (SRK) and three putative substrates, ARC1 and the two thioredoxin h proteins, THL1 and THL2. Interactions were generally detectable with kinase domains of both Class I and Class II SRKs. Chimeric constructs were made between the SRK910 kinase domain and the non-interacting Arabidopsis RLK5 kinase domain. Only one chimeric construct, SRR2, interacted with THL1 and THL2, while none of the chimeras were able to interact with ARC1. SRR2 is largely made up of RLK5 kinase domain with the N-terminal end being derived from the SRK910 kinase domain and was the only chimeric construct that retained kinase activity. Deletion or substitution of a conserved cysteine at the N-terminal end of the SRK910 kinase domain resulted in loss of interaction with THL1 and THL2, while the addition of this cysteine to a related receptor kinase, SFR1, conferred the ability to interact with the thioredoxin h proteins. In addition, substitution of the cysteines in the THL1 active site abolished the interaction. Lastly, the two Arabidopsis thioredoxin h clones most closely related to THL1 and THL2 were found to interact with the SRK kinase domains. Thus, the nature of the interaction of the thioredoxin h clones with SRK involves the reducing activity of these proteins and is restricted to the class of thioredoxin h proteins which have the variant CPPC active site.  相似文献   

19.
Lai  Zhao  Ma  Wenshi  Han  Bin  Liang  Lizhi  Zhang  Yansheng  Hong  Guofan  Xue  Yongbiao 《Plant molecular biology》2002,50(1):29-41
In many flowering plants, self-fertilization is prevented by an intraspecific reproductive barrier known as self-incompatibility (SI), that, in most cases, is controlled by a single multiallelic S locus. So far, the only known S locus product in self-incompatible species from the Solanaceae, Scrophulariaceae and Rosaceae is a class of ribonucleases called S RNases. Molecular and transgenic analyses have shown that S RNases are responsible for pollen rejection by the pistil but have no role in pollen expression of SI, which appears to be mediated by a gene called the pollen self-incompatibility or Sp gene. To identify possible candidates for this gene, we investigated the genomic structure of the S locus in Antirrhinum, a member of the Scrophulariaceae. A novel F-box gene, AhSLF-S 2, encoded by the S 2 allele, with the expected features of the Sp gene was identified. AhSLF-S 2 is located 9 kb downstream of S 2 RNase gene and encodes a polypeptide of 376 amino acids with a conserved F-box domain in its amino-terminal part. Hypothetical genes homologous to AhSLF-S 2 are apparent in the sequenced genomic DNA of Arabidopsis and rice. Together, they define a large gene family, named SLF (S locus F-box) family. AhSLF-S 2 is highly polymorphic and is specifically expressed in tapetum, microspores and pollen grains in an allele-specific manner. The possibility that Sp encodes an F-box protein and the implications of this for the operation of self-incompatibility are discussed.  相似文献   

20.
Sweet potato (Ipomoea batatas (L.) Lam.) breeding has been hampered by self-and cross-incompatibilities that are frequently encountered among the plants in the section Batatas. Ovule culture techniques were developed to assist in overcoming some of these incompatibilities. Ovules that contain embryos at the late globular to heart shaped stage of development were cultured on MS medium containing full strength or one-half strength salts with 3%, 8% or 12% sucrose. Ovules were cultured either intact or after slicing. Ovules of I. triloba and I. trifida were successfully cultured as early as 3 and 4 days after pollination while sweet potato ovules were successfully cultured 5 and 6 days after pollination. The percentage of ovules with developing embryos on the media tested ranged from 27.8% to 50.2%. The highest percentage of embryos developed when the ovules were sliced and cultured on medium containing one-half MS salts and 8% sucrose. Three plants were recovered from cultured ovules of incompatible interspecific crosses.Abbreviations DAP days after pollination - MS medium Murashige and Skoog (1962) medium  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号