首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important problem in phylogenetics is the construction of phylogenetic trees. One way to approach this problem, known as the supertree method, involves inferring a phylogenetic tree with leaves consisting of a set X of species from a collection of trees, each having leaf-set some subset of X. In the 1980s, Colonius and Schulze gave certain inference rules for deciding when a collection of 4-leaved trees, one for each 4-element subset of X, can be simultaneously displayed by a single supertree with leaf-set X. Recently, it has become of interest to extend this and related results to phylogenetic networks. These are a generalization of phylogenetic trees which can be used to represent reticulate evolution (where species can come together to form a new species). It has recently been shown that a certain type of phylogenetic network, called a (unrooted) level-1 network, can essentially be constructed from 4-leaved trees. However, the problem of providing appropriate inference rules for such networks remains unresolved. Here, we show that by considering 4-leaved networks, called quarnets, as opposed to 4-leaved trees, it is possible to provide such rules. In particular, we show that these rules can be used to characterize when a collection of quarnets, one for each 4-element subset of X, can all be simultaneously displayed by a level-1 network with leaf-set X. The rules are an intriguing mixture of tree inference rules, and an inference rule for building up a cyclic ordering of X from orderings on subsets of X of size 4. This opens up several new directions of research for inferring phylogenetic networks from smaller ones, which could yield new algorithms for solving the supernetwork problem in phylogenetics.  相似文献   

2.
In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species X; these relationships are often depicted via a phylogenetic tree—a tree having its leaves labeled bijectively by elements of X and without degree-2 nodes—called the “species tree.” One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g., DNA sequences originating from some species in X), and then constructing a single phylogenetic tree maximizing the “concordance” with the input trees. The obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping—but not identical—sets of labels, is called “supertree.” In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of “containing as a minor” and “containing as a topological minor” in the graph community. Both problems are known to be fixed parameter tractable in the number of input trees k, by using their expressibility in monadic second-order logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on k of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time \(2^{O(k^2)} \cdot n\), where n is the total size of the input.  相似文献   

3.
The need for structures capable of accommodating complex evolutionary signals such as those found in, for example, wheat has fueled research into phylogenetic networks. Such structures generalize the standard model of a phylogenetic tree by also allowing for cycles and have been introduced in rooted and unrooted form. In contrast to phylogenetic trees or their unrooted versions, rooted phylogenetic networks are notoriously difficult to understand. To help alleviate this, recent work on them has also centered on their “uprooted” versions. By focusing on such graphs and the combinatorial concept of a split system which underpins an unrooted phylogenetic network, we show that not only can a so-called (uprooted) 1-nested network N be obtained from the Buneman graph (sometimes also called a median network) associated with the split system \(\Sigma (N)\) induced on the set of leaves of N but also that that graph is, in a well-defined sense, optimal. Along the way, we establish the 1-nested analogue of the fundamental “splits equivalence theorem” for phylogenetic trees and characterize maximal circular split systems.  相似文献   

4.
We consider a set of species S and are interested in the assessment of the subsets of S from a phylogenetic diversity viewpoint. Several measures can be used for this assessment. Here we have retained phylogenetic diversity (PD) in the sense of Faith, a measure widely used to reflect the evolutionary history accumulated by a group of species. The PD of a group of species X included in S is easy to calculate when the phylogenetic tree associated with S is perfectly known but this situation is rarely verified. We are interested here in cases where uncertainty regarding the length of branches and the topology of the tree is reflected in the fact that several phylogenetic trees are considered to be plausible for the set S. We propose several measures of the phylogenetic diversity to take account of the uncertainty arising from this situation. A natural problem in the field of biological conservation is to select the best subset of species to protect from a group of threatened species. Here, the best subset is the one that optimizes the proposed measures. We show how to solve these optimal selection problems by integer linear programming. The approach is illustrated by several examples.  相似文献   

5.
6.
Mucuna comprises 105 species with an overall pantropical distribution and is divided into three subgenera: M. subg. Mucuna, M. subg. Stizolobium and M. subg. Macrocarpa. Although phylogenetic studies have supported the occurrence of three main clades, evolutionary relationships among them are not fully resolved. The objective of this study was to examine pollen grain morphology from representatives of all three subgenera and map these onto the phylogenetic trees generated by analysis of other characters. Pollen grain surface, form, size, and aperture number were compared. A Bayesian inference tree using matK sequences was constructed. The results indicate that the representatives of M. subg. Macrocarpa have the smallest pollen grains in the genus (a synapomorphic character here identified for this subgenus) and that species of subgenus Mucuna (those with umbelliform inflorescences) have the largest pollen grains. Additional morphological diversity of the pollen grain surface was noted: reticulate and/or micro-reticulate (in all three subgenera), perforate, gemmate or verrucose (only in M. subg. Mucuna). For all studied taxa, the pollen grains are triaperturate, except for two species of M. subg. Mucuna, which have tetraperturate pollen. The phylogenetic tree obtained using the matK marker resolved M. subg. Stizolobium as the earliest diverging lineage in Mucuna. Based on this phylogeny, a reticulate ornamentation pattern of the pollen surface may represent the ancestral state for the genus, while the larger pollen size and the foraminate, gemmate, and verrucose ornamentations are derived characteristics within the genus. These putative derived ornamentations have been observed only in neotropical species.  相似文献   

7.
The present study focused on identification and genotypic characterization of Lactic acid bacteria (LAB) in the intestine of freshwater fish. 76 strains of LAB were isolated and identified by 16S rRNA gene sequences and hsp60 gene sequences as different strains of Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus fermentum, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus brevis, Lactobacillus reuteri, Lactobacillus salivarius, Pediococcus pentosaceus, Pediococcus acidilactici, Weissella paramesenteroides, Weissella cibaria, Enterococcus faecium, and Enterococcus durans. The hsp60 gene showed a higher level of sequence variation among the isolates examined, with lower interspecies sequence similarity providing more resolutions at the species level than the 16S rRNA gene. Phylogenetic tree derived from hsp60 gene sequences with higher bootstrap values at the nodal branches was more consistent as compared to phylogenetic tree constructed from 16S rRNA gene sequences. Closely related species L. plantarum and L. pentosus as well as species L. delbrueckii subsp. bulgaricus and L. fermentum were segregated in different cluster in hsp60 phylogenetic tree whereas such a distribution was not apparent in 16S rRNA phylogenetic tree. In silico restriction analysis revealed a high level of polymorphism within hsp60 gene sequences. Restriction pattern with enzymes AgsI and MseI in hsp60 gene sequences allowed differentiation of all the species including closely related species L. plantarum and L. pentosus, E. faecium and E. durans. In general, hsp60 gene with higher evolutionary divergence proved to be a better phylogenetic marker for the group LAB.  相似文献   

8.
Plant disease resistance (R) genes have undergone significant evolutionary divergence to cope with rapid changes in pathogens. These highly variable evolutionary patterns may have contributed to diversity in R gene protein families or structures. Here, the evolutionary patterns of 76 identified R genes and their homologs were investigated within and between plant species. Results demonstrated that nucleotide binding sites and leucine-rich-repeat genes located in loci with complex evolutionary histories tended to evolve rapidly, have high variation in copy numbers, exhibit high levels of nucleotide variation and frequent gene conversion events, and also exhibit high non-synonymous to synonymous substitution ratios in LRR regions. However, non-NBS-LRR R genes are relatively well conserved with constrained variation and are more likely to participate in the basic defense system of hosts. In addition, both conserved and highly divergent evolutionary patterns were observed for the same R genes and were consistent with inter- and intra-specific distributions of some R genes. These results thus indicate either continuous or altered evolutionary patterns between and within species. The present investigation is the first attempt to investigate evolutionary patterns among all clearly functional R genes. The results reported here thus provide a foundation for future plant disease studies.  相似文献   

9.
Orphanodendron is a taxonomically and geographically isolated South American genus of two species. When first described by Barneby and Grimes in 1990, the genus was placed in Leguminosae subfamily Caesalpinioideae, but that placement was doubted and the name Orphanodendron (Gr. orphanos, orphan + dendron, tree) was chosen to reflect the uncertain subfamilial relationship of the genus. In this study, nucleotide sequence data from five Orphanodendron specimens were added to 662 other, previously sampled, Leguminosae taxa representing all three currently recognized subfamilies (Caesalpinioideae, Mimosoideae and Papilionoideae) in a matK maximum parsimony analysis that resolved Orphanodendron as a member of the genistoid s.l. clade of subfamily Papilionoideae. Two additional Bayesian phylogenetic analyses with reduced taxon sampling of plastid (matK combined with trnL-F) and nuclear (ITS) loci strongly support the monophyly of Orphanodendron and unambiguously establish Orphanodendron as a member of the genistoid sensu lato clade. Although our plastid phylogenetic analysis finds relatively low support for a sister-group relationship with the African genus Camoensia, the nuclear-encoded ITS resolves Orphanodendron as sister to the Bowdichia clade with strong support and Camoensia as sister to other core genistoids. The phylogenetic resolution of Orphanodendron as a member of the genistoid s.l. legumes based on nuclear and plastid sequences will undoubtedly advance future evolutionary investigations of this Colombian endemic tropical tree genus.  相似文献   

10.
This paper uses combinatorics and group theory to answer questions about the assembly of icosahedral viral shells. Although the geometric structure of the capsid (shell) is fairly well understood in terms of its constituent subunits, the assembly process is not. For the purpose of this paper, the capsid is modeled by a polyhedron whose facets represent the monomers. The assembly process is modeled by a rooted tree, the leaves representing the facets of the polyhedron, the root representing the assembled polyhedron, and the internal vertices representing intermediate stages of assembly (subsets of facets). Besides its virological motivation, the enumeration of orbits of trees under the action of a finite group is of independent mathematical interest. If G is a finite group acting on a finite set X, then there is a natural induced action of G on the set \(\mathcal{T}_{X}\) of trees whose leaves are bijectively labeled by the elements of X. If G acts simply on X, then |X|:=|X n |=n?|G|, where n is the number of G-orbits in X. The basic combinatorial results in this paper are (1) a formula for the number of orbits of each size in the action of G on \(\mathcal{T}_{X_{n}}\), for every n, and (2) a simple algorithm to find the stabilizer of a tree \(\tau\in\mathcal{T} _{X}\) in G that runs in linear time and does not need memory in addition to its input tree. These results help to clarify the effect of symmetry on the probability and number of assembly pathways for icosahedral viral capsids, and more generally for any finite, symmetric macromolecular assembly.  相似文献   

11.
We describe a new cliff-dwelling species within Sonchus (Asteraceae): Sonchus boulosii and analyze its systematic position and evolutionary significance; in addition, we provide a key to the species of Sonchus in Morocco. Both morphological and ecological characteristics suggest a close relationship of S. boulosii with taxa of section Pustulati. However, ITS nrDNA and cpDNA matK markers indicate its uncertain position within the genus, but clear genetic differentiation from the remaining major clades. ITS phylogenetic trees show that likely evolutionary shifts to rocky habitat took place at least five times within genus Sonchus and that sect. Pustulati and S. boulosii clades have a clearly independent evolutionary origin. We postulate that the strong resemblance of S. boulosii to other rocky species reflects a phenomenon of homoplasy, probably driven by parallel evolutionary adaptations to the severe ecological constraints of its cliff face habitat. Therefore, a new section is also described, which includes S. boulosii as its sole representative: section Pulvinati. According to phylogenetic trees, the new clade may share its common ancestor with the clade comprising sections Maritimi and Arvenses, from which it is widely divergent in morphology and ecology, with the exception of Sonchus novae-zelandiae. However, the latter is a derived taxon, with high level of polyploidy unlike S. boulosii that shows 2n?=?18, basal chromosome number of the genus. Since sections Pulvinati and Pustulati seem to be quite old in Sonchus, we also hypothesize that some similarities, such as fruit morphology, may reflect the persistence of some primitive characteristics.  相似文献   

12.
The conservation of narrow endemic species relies on accurate information regarding their population structure. Juglans hopeiensis Hu (Ma walnut), found only in Hebei province, Beijing, and Tianjin, China, is a threatened tree species valued commercially for its nut and wood. Sequences of two maternally inherited mitochondrial markers and two maternally inherited chloroplast intergenic spacers, three nuclear DNA sequences, and allele sizes from 11 microsatellites were obtained from 108 individuals of J. hopeiensis, Juglans regia, and Juglans mandshurica. Haplotype networks were constructed using NETWORK. Genetic diversity, population differentiation, and analysis of molecular variance (AMOVA) were used to determine genetic structure. MEGA was used to construct phylogenetic trees. Genetic diversity of J. hopeiensis was moderate based on nuclear DNA, but low based on uniparentally inherited mitochondrial DNA and chloroplast DNA. Haplotype networks showed that J. hopeiensis haplotypes were different than haplotypes found in J. regia and J. mandshurica. Allelic variants in nuclear genes that were shared among J. hopeiensis populations were not found in J. regia or J. mandshurica. Sampled populations of J. hopeiensis showed clear genetic structure. The maximum parsimony (MP) tree showed J. hopeiensis to be distinct from J. mandshurica but threatened by hybridization with J. regia and J. mandshurica. J. hopeiensis populations are strongly differentiated from sympatric Juglans species, but they are threatened by small population sizes and hybridization.  相似文献   

13.
Lipases are physiologically important and ubiquitous enzymes that share a conserved domain and are classified into eight different families based on their amino acid sequences and fundamental biological properties. The Lipase3 family of lipases was reported to possess a canonical fold typical of α/β hydrolases and a typical catalytic triad, suggesting a distinct evolutionary origin for this family. Genes in the Lipase3 family do not have the same functions, but maintain the conserved Lipase3 domain. There have been extensive studies of Lipase3 structures and functions, but little is known about their evolutionary histories. In this study, all lipases within five plant species were identified, and their phylogenetic relationships and genetic properties were analyzed and used to group them into distinct evolutionary families. Each identified lipase family contained at least one dicot and monocot Lipase3 protein, indicating that the gene family was established before the split of dicots and monocots. Similar intron/exon numbers and predicted protein sequence lengths were found within individual groups. Twenty-four tandem Lipase3 gene duplications were identified, implying that the distinctive function of Lipase3 genes appears to be a consequence of translocation and neofunctionalization after gene duplication. The functional genes EDS1, PAD4, and SAG101 that are reportedly involved in pathogen response were all located in the same group. The nucleotide diversity (Dxy) and the ratio of nonsynonymous to synonymous nucleotide substitutions rates (Ka/Ks) of the three genes were significantly greater than the average across the genomes. We further observed evidence for selection maintaining diversity on three genes in the Toll-Interleukin-1 receptor type of nucleotide binding/leucine-rich repeat immune receptor (TIR-NBS LRR) immunity-response signaling pathway, indicating that they could be vulnerable to pathogen effectors.  相似文献   

14.
Capitulate inflorescence is a specific, strongly adaptive and rare feature in the genus Campanula. We studied morphologically eight capitulate Campanula taxa from the Balkans (1537 individuals/52 populations) and one more species from Caucasus at the molecular level (using chloroplast markers trnGUCC-trnSGCU and psbA-trnH, 130 individuals/58 populations) to assess their relations and evolutionary histories. Although all studied taxa were well circumscribed at both the morphological and molecular levels (except morphologically distinct but genetically invariable C. moesiaca which acquired its single haplotype via past cytoplasmic introgression from C. cervicaria), their relations inferred from the two datasets were incongruent possibly due to the homoplasy of morphological characters frequently reported in Campanula. Interspecific hybridization and introgression affected majority of studied species and may be more common in Campanula than previously thought. These processes, along with incomplete lineage sorting and retention of ancestral polymorphisms, hampered our phylogenetic reconstructions and prevented us to fully resolve species relations, and to support monophyletic origin of capitulate Campanula species. Nonetheless, several cryptic taxa were delineated, and C. daucoides was described as a new capitulate Campanula species. Different evolutionary histories and multiple glacial refugia were inferred for all species represented by multiple samples (except C. moesiaca). According to our dating, their speciation was in most cases triggered by various geo-historic events such as the uplift of the Alpide belt, Messinian Salinity Crisis, or desiccation of the Pannonian Sea/Pliocene Lakes from the central Balkans, while their further diversification was mainly driven by the onset of the Quaternary and cycles of glacials/interglacials.  相似文献   

15.
The plastid genome regions of two intergenic spacers, psbA–trnH and trnL–trnF, were sequenced to study the nucleotide diversity and phylogenetic relationships among Gladiolus cultivars. Nucleotide diversity of psbA–trnH region was higher than trnL–trnF region of chloroplast. We employed Bayesian, maximum parsimony (MP) and neighbour-joining (NJ) approaches for phylogenetic analysis of Gladiolus and related taxa using combined datasets from chloroplast genome. The psbA–trnH and trnL–trnF intergenic spacers of Gladiolus and related taxa-like Babiana, Chasmanthe, Crocus, Iris, Moraea, Sisyrinchium, Sparaxis and two out group species (Hymenocallis littoralis and Asphodeline lutea) were used in the present investigation. Results showed that subfamily Iridoideae have sister lineage with subfamily Ixioideae and Crocoideae. H. littoralis and A. lutea were separately attached at the base of tree as the diverging Iridaceae relative’s lineage. Present study revealed that psbA–trnH region are useful in addressing questions of phylogenetic relationships among the Gladiolus cultivars, as these intergenic spacers are more variable and have more phylogenetically informative sites than the trnL–trnF spacer, and therefore, are suitable for phylogenetic comparison on a lower taxonomic level. Gladiolus cultivars are extensively used as an ornamental crop and showed high potential in floriculture trade. Gladiolus cultivation still needs to generate new cultivars with stable phenotypes. Moreover, one of the most popular methods for generating new cultivars is hybridization. Hence, information on phylogenetic relationships among cultivars could be useful for hybridization programmes for further improvement of the crop.  相似文献   

16.
Self-complementary circular codes are involved in pairing genetic processes. A maximal \(C^3\) self-complementary circular code X of trinucleotides was identified in genes of bacteria, archaea, eukaryotes, plasmids and viruses (Michel in Life 7(20):1–16 2017, J Theor Biol 380:156–177, 2015; Arquès and Michel in J Theor Biol 182:45–58 1996). In this paper, self-complementary circular codes are investigated using the graph theory approach recently formulated in Fimmel et al. (Philos Trans R Soc A 374:20150058, 2016). A directed graph \(\mathcal {G}(X)\) associated with any code X mirrors the properties of the code. In the present paper, we demonstrate a necessary condition for the self-complementarity of an arbitrary code X in terms of the graph theory. The same condition has been proven to be sufficient for codes which are circular and of large size \(\mid X \mid \ge 18\) trinucleotides, in particular for maximal circular codes (\(\mid X \mid = 20\) trinucleotides). For codes of small-size \(\mid X \mid \le 16\) trinucleotides, some very rare counterexamples have been constructed. Furthermore, the length and the structure of the longest paths in the graphs associated with the self-complementary circular codes are investigated. It has been proven that the longest paths in such graphs determine the reading frame for the self-complementary circular codes. By applying this result, the reading frame in any arbitrary sequence of trinucleotides is retrieved after at most 15 nucleotides, i.e., 5 consecutive trinucleotides, from the circular code X identified in genes. Thus, an X motif of a length of at least 15 nucleotides in an arbitrary sequence of trinucleotides (not necessarily all of them belonging to X) uniquely defines the reading (correct) frame, an important criterion for analyzing the X motifs in genes in the future.  相似文献   

17.
The mycobacterial insertion sequence IS6110 proved crucial in deciphering tuberculosis (TB) transmission dynamics. This sequence was also shown to play an important role in the pathogenicity (transmission ability and/or virulence) of Mycobacterium tuberculosis, the main causative agent of TB in humans. In this study, we explored the usefulness of IS6110 and its potential as a phylogenetic/typing marker. We also analyzed the genetic polymorphism and evolutionary trends (selective pressure) of its transposase-encoding open reading frames (ORFs), A and B, using the maximum likelihood method. Both ORFs evolved chronologically through random single nucleotide polymorphisms. They were subjected to strict purifying selection more tight on orfA, with no evidence of significant recombination events. OrfA proved to have a crucial role in regulating the transpositional process. Several analyses showed that IS6110 acquisition antedated the emergence of the Mycobacterium tuberculosis complex. This original copy of IS6110 element was functionally optimal. In conclusion, this study not only demonstrated the usefulness of IS6110 in terms of phylogenetic and typing purposes and its transpositional mechanism, but also informed the scientific community on its evolutionary history.  相似文献   

18.
Ambrosia beetles subsist on fungal symbionts that they carry to, and cultivate in, their natal galleries. These symbionts are usually saprobes, but some are phytopathogens. Very few ambrosial symbioses have been studied closely, and little is known about roles that phytopathogenic symbionts play in the life cycles of these beetles. One of the latter symbionts, Raffaelea lauricola, causes laurel wilt of avocado, Persea americana, but its original ambrosia beetle partner, Xyleborus glabratus, plays an uncertain role in this pathosystem. We examined the response of a putative, alternative vector of R. lauricola, Xyleborus bispinatus, to artificial diets of R. lauricola and other ambrosia fungi. Newly eclosed, unfertilized females of X. bispinatus were reared in no-choice assays on one of five different symbionts or no symbiont. Xyleborus bispinatus developed successfully on R. lauricola, R. arxii, R. subalba and R. subfusca, all of which had been previously recovered from field-collected females of X. bispinatus. However, no development was observed in the absence of a symbiont or on another symbiont, Ambrosiella roeperi, recovered from another ambrosia beetle, Xylosandrus crassiusculus. In the no-choice assays, mycangia of foundress females of X. bispinatus harbored significant colony-forming units of, and natal galleries that they produced were colonized with, the respective Raffaelea symbionts; with each of these fungi, reproduction, fecundity and survival of the beetle were positively impacted. However, no fungus was recovered from, and reproduction did not occur on, the A. roeperi and no symbiont diets. These results highlight the flexible nature of the ambrosial symbiosis, which for X. bispinatus includes a fungus with which it has no evolutionary history. Although the “primary” symbiont of the neotropical X. bispinatus is unclear, it is not the Asian R. lauricola.  相似文献   

19.
Data reflecting evolutionary changes in chromosomal gene order can be used for phylogenetic reconstructions along with the results of nucleotide sequence comparison. By the example of bacteria of the genus Rickettsia, we have shown that phylogenetic reconstructions based on quantitative estimates of the similarity and cladistic analysis of gene order data, may, in some cases, amend and fill up classical phylogenetic trees. When applied, these approaches enabled us to substantiate the hypothesis that Rickettsia felis species had split before the typhus (R. typhi, R. prowazekii) and spotted fever (R. connorii) group divergence and thus R. felis does not belong to the latter group. In general, rickettsias evolved towards increasing intracellular parasitic specialization. Five Rickettsia species whose genomes have been sequenced and annotated completely actually form an evolutionary series R. bellii—R. felis—R. conorii—R. prowazekii—R. typhi. Within this series, a reduction in genome size and rapid decrease of genome rearrangement rates (genome plasticity loss) gradually occur.  相似文献   

20.
Nicotiana sect. Repandae is a group of four allotetraploid species originating from a single allopolyploidisation event approximately 5 million years ago. Previous phylogenetic analyses support the hypothesis of N. nudicaulis as sister to the other three species. This is concordant with changes in genome size, separating those with genome downsizing (N. nudicaulis) from those with genome upsizing (N. repanda, N. nesophila, N. stocktonii). However, a recent analysis reflecting genome dynamics of different transposable element families reconstructed greater similarity between N. nudicaulis and the Revillagigedo Island taxa (N. nesophila and N. stocktonii), thereby placing N. repanda as sister to the rest of the group. This could reflect a different phylogenetic hypothesis or the unique evolutionary history of these particular elements. Here we re-examine relationships in this group and investigate genome-wide patterns in repetitive DNA, utilising high-throughput sequencing and a genome skimming approach. Repetitive DNA clusters provide support for N. nudicaulis as sister to the rest of the section, with N. repanda sister to the two Revillagigedo Island species. Clade-specific patterns in the occurrence and abundance of particular repeats confirm the original (N. nudicaulis (N. repanda (N. nesophila + N. stocktonii))) hypothesis. Furthermore, overall repeat dynamics in the island species N. nesophila and N. stocktonii confirm their similarity to N. repanda and the distinctive patterns between these three species and N. nudicaulis. Together these results suggest that broad-scale repeat dynamics do in fact reflect evolutionary history and could be predicted based on phylogenetic distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号