首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pacinian corpuscle (PC) is the cutaneous mechanoreceptor responsible for sensation of high-frequency (20–1000 Hz) vibrations. PCs lie deep within the skin, often in multicorpuscle clusters with overlapping receptive fields. We developed a finite-element mechanical model of one or two PCs embedded within human skin, coupled to a multiphysics PC model to simulate action potentials elicited by each PC. A vibration was applied to the skin surface, and the resulting mechanical signal was analyzed using two metrics: the deformation amplitude ratio (\({\rho }_{\mathrm{1S}} \), \({\rho }_{\mathrm{2S}} )\) and the phase shift of the vibration (\({\delta }_{\mathrm{S}1}^{\mathrm{mech}} \), \({\delta }_{\mathrm{S}2}^{\mathrm{mech}} )\) between the stimulus and the PC. Our results showed that the amplitude attenuation and phase shift at a PC increased with distance from the stimulus to the PC. Differences in amplitude (\(\rho _{12} )\) and phase shift (\({\delta }_{12}^{\mathrm{mech}} )\) between the two PCs in simulated clusters directly affected the interspike interval between the action potentials elicited by each PC (\({\delta }_{12}^{\mathrm{spike}} )\). While \({\delta }_{12}^{\mathrm{mech}} \) had a linear relationship with \({\delta }_{12}^{\mathrm{spike}} \), \(\rho _{12} \)’s effect on \({\delta }_{12}^{\mathrm{spike}} \) was greater for lower values of \(\rho _{12} \). In our simulations, the separation between PCs and the distance of each PC from the stimulus location resulted in differences in amplitude and phase shift at each PC that caused \({\delta }_{12}^{\mathrm{spike}} \) to vary with PC location. Our results suggest that PCs within a cluster receive different mechanical stimuli which may enhance source localization of vibrotactile stimuli, drawing parallels to sound localization in binaural hearing.  相似文献   

2.
Biological denitrification typically requires the addition of a supplemental electron donor, which can add a significant operating expense to wastewater treatment facilities. Most common electron donors are organic, but reduced inorganic sulfur compounds (RISCs), such as sulfide (HS?) and elemental sulfur (S0), may be more cost-effective. S0 is an inexpensive and well characterized electron donor, but it provides slow denitrification rates due to its low solubility. A lesser-known RISC is sulfite (\({\text{SO}}_{3}^{2 - }\)), which can be easily produced from S0 by a simple combustion process. Unlike S0, \({\text{SO}}_{3}^{2 - }\) is highly soluble, and therefore may provide higher denitrification rates. However, very little is known about microbial denitrification with \({\text{SO}}_{3}^{2 - }\). Also, \({\text{SO}}_{3}^{2 - }\) is a strong reductant that reacts abiotically with oxygen and has toxic effects on microorganisms. This paper reviews \({\text{SO}}_{3}^{2 - }\) in the environment, \({\text{SO}}_{3}^{2 - }\) chemistry, microbiology, toxicity, and its potential use for denitrification. Since \({\text{SO}}_{3}^{2 - }\) is an intermediate in the sulfur oxidation pathway of most sulfur-oxidizing microorganisms, it is an energetic electron donor and it should select for a \({\text{SO}}_{3}^{2 - }\)-oxidizing community. Our review of the literature, as well as our own lab experience, suggests that \({\text{SO}}_{3}^{2 - }\) can effectively serve as an electron donor for denitrification. Further research is needed to determine the kinetics of \({\text{SO}}_{3}^{2 - }\)-based denitrification, its toxic threshold for sulfur-oxidizing microorganisms, and its potential inhibition of sensitive species such as nitrifying microorganisms and potential formation of nitrous oxide. Its effect on sludge settling efficiency also should be explored.  相似文献   

3.
Busseola fusca is a maize and sorghum pest that can cause significant damage to both crops. Given that maize is one of the main cereals grown in the worldwide, this pest is a major challenge for maize production and therefore for the economies of several countries . In this paper , based on the life cycle of B. fusca, we propose a mathematical model to study the population dynamics of this insect pest . A sensitivity analysis using the eFast method was performed to show the most important parameters of the model. We present the theoretical analysis of the model. More precisely, we derive a threshold parameter \({\mathcal {N}}_0\), called basic offspring number and show that the trivial equilibrium is globally asymptotically stable whenever \({\mathcal {N}}_0\le 1\), while if \({\mathcal {N}}_0>1\), the non trivial equilibrium is globally asymptotically stable. The theoretical results are supported by numerical simulations.  相似文献   

4.
FtsX is an integral membrane protein from Streptococcus pneumoniae (pneumococcus) that harbors an extracellular loop 1 domain (\({\text{FtsX}}^{\text{ECL1}}_{Spn}\)) that interacts with PcsB, an peptidoglycan hydrolase that is essential for cell growth and division. Here, we report nearly complete backbone and side chain resonance assignments and a secondary structural analysis of \({\text{FtsX}}^{\text{ECL1}}_{Spn}\) (residues 47–168 of FtsX) as first steps toward structure determination of \({\text{FtsX}}^{\text{ECL1}}_{Spn}\).  相似文献   

5.
Many microbes responsible for inorganic nutrient uptake and transformation utilize dissolved organic matter (DOM) as a nutrient or energy source, but little is known about whether DOM composition is an important driver of nutrient uptake in streams. Our goal was to determine whether incorporating DOM composition metrics with other more commonly considered biological, physical, and chemical variables improved our ability to explain patterns of ammonium (\({\text{NH}}_{4}^{ + }\)–N) and soluble reactive phosphorus (SRP) uptake across 11 Lake Superior tributaries. Nutrient uptake velocities (Vf) ranged from undetectable to 14.6 mm min?1 for \({\text{NH}}_{4}^{ + }\)–N and undetectable to 7.2 mm min?1 for SRP. Logistic regressions suggested that DOM composition was a useful predictor of where SRP uptake occurred (4/11 sites) and \({\text{NH}}_{4}^{ + }\)–N concentration was a useful predictor of where \({\text{NH}}_{4}^{ + }\)–N uptake occurred (9/11 sites). Multiple regression analysis revealed that the best models included temperature, specific discharge, and canopy cover, and DOM composition as significant predictors of \({\text{NH}}_{4}^{ + }\)–N Vf. Partial least squares revealed fluorescence index (describing the source of aquatic fulvic acids), specific ultraviolet absorbance at 254 nm (an indicator of DOM aromaticity), temperature, and conductivity were highly influential predictors of \({\text{NH}}_{4}^{ + }\)–N Vf. Therefore, streams with higher temperatures, lower solute concentrations, more terrestrial DOM signal and greater aromaticity had greater \({\text{NH}}_{4}^{ + }\)–N Vf. Our results suggest that DOM composition may be an important, yet often overlooked, predictor of \({\text{NH}}_{4}^{ + }\)–N and SRP uptake in deciduous forest streams that should be considered along with commonly measured predictors.  相似文献   

6.
As an efficient and cost-effective nitrogen removal process, anaerobic ammonium oxidation (ANAMMOX) could be well operated at suitable pH condition. However, pH shock occurred in different kinds of wastewater and affected ANANNOX process greatly. The present research aimed at studying the performance and kinetics of ANAMMOX granular sludge with pH shock. When influent pH was below 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with decreasing pH. At Ph 6.0, effluent \({\text{NO}}_{2}^{ - }\)–N approached 100 mg/L, and the ratios of \(\Delta {\text{NO}}_{2}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N and }}\Delta {\text{NO}}_{3}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N}}\) approached 2.2 and 1.3, respectively. Both greatly deviated from theoretical values. When influent pH was above 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with increasing pH. At pH 9.0, ammonium removal rate (ARR) and nitrite removal rate (NRR) decreased to 0.011 ± 0.004 and 0.035 ± 0.004 kg/(m3·d), respectively. Besides, \(\Delta {\text{NO}}_{2}^{ - }\)–N:\(\Delta {\text{NH}}_{4}^{ + }\)–N deviated from theoretical value. Longer recovery time from pH 9.0 than from pH 6.0 indicated that alkaline surroundings inhibited anaerobic ammonium oxidizing bacteria (AAOB) greater. The sludge settling velocity was 2.15 cm/s at pH 7.5. However, it decreased to 2.02 cm/s when pH was 9.0. Acidic pH had little effect on sludge size, but disintegration of ANAMMOX granule was achieved with pH of 9.0. The Bell-shaped (A) model and the Ratkowsky model were more applicable to simulate the effect resulting from pH shock on ANAMMOX activity (R2 > 0.95), and both could describe ANAMMOX activity well with pH shock. They indicated that qmax was 0.37 kg \(\Delta {\text{NH}}_{4}^{ + }\)–N/(kgMLSS·d) at the optimum pH value (7.47) in present study. The minimum pH during which ANAMMOX occurred was 5.68 while the maximum pH for ANAMMOX reaction was 9.26. Based on nitrogen removal performance with different pH, strongly acidic (pH ≤ 6.5) or alkaline (pH ≥ 8.5) inhibited ANAMMOX process. Besides, ANAMMOX appeared to be more susceptible to alkaline wastewater. Compared to extremely acidic condition (low pH), extremely alkaline condition (high pH) affected ANAMMOX granules much more.  相似文献   

7.
This study presents a framework for a direct comparison of experimental vocal fold dynamics data to a numerical two-mass-model (2MM) by solving the corresponding inverse problem of which parameters lead to similar model behavior. The introduced 2MM features improvements such as a variable stiffness and a modified collision force. A set of physiologically sensible degrees of freedom is presented, and three optimization algorithms are compared on synthetic vocal fold trajectories. Finally, a total of 288 high-speed video recordings of six excised porcine larynges were optimized to validate the proposed framework. Particular focus lay on the subglottal pressure, as the experimental subglottal pressure is directly comparable to the model subglottal pressure. Fundamental frequency, amplitude and objective function values were also investigated. The employed 2MM is able to replicate the behavior of the porcine vocal folds very well. The model trajectories’ fundamental frequency matches the one of the experimental trajectories in \(98.6\%\) of the recordings. The relative error of the model trajectory amplitudes is on average \(9.5\%\). The experiments feature a mean subglottal pressure of 10.16 (SD \(= 2.31\)) \({\text {cmH}}_2{\text {O}}\); in the model, it was on average 7.61 (SD \(= 2.40\)) \({\text {cmH}}_2{\text {O}}\). A tendency of the model to underestimate the subglottal pressure is found, but the model is capable of inferring trends in the subglottal pressure. The average absolute error between the subglottal pressure in the model and the experiment is 2.90 (SD \(= 1.80\)) \({\text {cmH}}_2{\text {O}}\) or \(27.5\%\). A detailed analysis of the factors affecting the accuracy in matching the subglottal pressure is presented.  相似文献   

8.
A class of models that describes the interactions between multiple host species and an arthropod vector is formulated and its dynamics investigated. A host-vector disease model where the host’s infection is structured into n stages is formulated and a complete global dynamics analysis is provided. The basic reproduction number acts as a sharp threshold, that is, the disease-free equilibrium is globally asymptotically stable (GAS) whenever \({\mathcal {R}}_0^2\le 1\) and that a unique interior endemic equilibrium exists and is GAS if \({\mathcal {R}}_0^2>1\). We proceed to extend this model with m host species, capturing a class of zoonoses where the cross-species bridge is an arthropod vector. The basic reproduction number of the multi-host-vector, \({\mathcal {R}}_0^2(m)\), is derived and shown to be the sum of basic reproduction numbers of the model when each host is isolated with an arthropod vector. It is shown that the disease will persist in all hosts as long as it persists in one host. Moreover, the overall basic reproduction number increases with respect to the host and that bringing the basic reproduction number of each isolated host below unity in each host is not sufficient to eradicate the disease in all hosts. This is a type of “amplification effect,” that is, for the considered vector-borne zoonoses, the increase in host diversity increases the basic reproduction number and therefore the disease burden.  相似文献   

9.
We prove almost sure exponential stability for the disease-free equilibrium of a stochastic differential equations model of an SIR epidemic with vaccination. The model allows for vertical transmission. The stochastic perturbation is associated with the force of infection and is such that the total population size remains constant in time. We prove almost sure positivity of solutions. The main result concerns especially the smaller values of the diffusion parameter, and describes the stability in terms of an analogue \(\mathcal{R}_\sigma\) of the basic reproduction number \(\mathcal{R}_0\) of the underlying deterministic model, with \(\mathcal{R}_\sigma \le \mathcal{R}_0\). We prove that the disease-free equilibrium is almost sure exponentially stable if \(\mathcal{R}_\sigma <1\).  相似文献   

10.
Adolescence methamphetamine use is an issue of considerable concern due to its correlation with later delinquency, divorce, unemployment and health problems. Understanding how adolescents initiate methamphetamine abuse is important in developing effective prevention programs. We formulate a mathematical model for the spread of methamphetamine abuse using nonlinear ordinary differential equations. It is assumed that susceptibles are recruited into methamphetamine use through imitation. An epidemic threshold value, \({\mathcal {R}}_a\), termed the abuse reproduction number, is proposed and defined herein in the drug-using context. The model is shown to exhibit the phenomenon of backward bifurcation. This means that methamphetamine problems may persist in the population even if \({\mathcal {R}}_a\) is less than one. Sensitivity analysis of \({\mathcal {R}}_a\) was performed to determine the relative importance of different parameters in methamphetamine abuse initiation. The model is then fitted to data on methamphetamine users less than 20 years old reporting methamphetamine as their primary substance of abuse in the treatment centres of Cape Town and parameter values that give the best fit are chosen. Results show that the proportion of methamphetamine users less than 20 years old reporting methamphetamine as their primary substance of abuse will continue to decrease in Cape Town of South Africa. The results suggest that intervention programs targeted at reducing adolescence methamphetamine abuse, are positively impacting methamphetamine abuse.  相似文献   

11.
12.
Trade-off between nutrient uptake rate and product accumulation has been found among species characterized as acquisitive and conservative strategies in resource utilization. However, long-term grazing causes changes in soil nutrient availability and plant species abundance by selective foraging and resource allocation between above- and belowground organs, which may cover up such trade-off. However, little is known whether the trade-off can be observed among species in community without grazing disturbance, and how grazing influences the trade-off. We conducted a 15N labelling experiment in winter grazing and grazing release alpine meadow communities on the Tibet Plateau. We examined changes in N form uptake of 11 common species and relationship of N chemical uptake rate with aboveground biomass. Grazing release increased soil \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{3}^{ - }\)–N, and increased \({\text{NO}}_{3}^{ - }\)–N uptake rate in two species and \({\text{NH}}_{4}^{ + }\)–N uptake rate in three species. Meanwhile, grazing release decreased aboveground biomass of three species and two of them belong to those species’ increased N uptake rate. Contrarily, grazing release increased aboveground biomass of four species and none belongs to the changed N uptake rate. Thus, grazing release caused changes of plant nutrient uptake rate and aboveground production in different directions, which explains the negative relationship of N uptake rate with aboveground biomass in ungrazed community. Our results indicate that the increase in nutrient uptake is probably one of the mechanisms for acquisitive species to cope with the raising nutrient availability and/or competition from the conservative dominant grasses after grazing release.  相似文献   

13.
Computational modelling has received increasing attention to investigate multi-scale coupled problems in micro-heterogeneous biological structures such as cells. In the current study, we investigated for a single cell the effects of (1) different cell-substrate attachment (2) and different substrate modulus \(\textit{E}_\mathrm{s}\) on intracellular deformations. A fibroblast was geometrically reconstructed from confocal micrographs. Finite element models of the cell on a planar substrate were developed. Intracellular deformations due to substrate stretch of \(\lambda =1.1\), were assessed for: (1) cell-substrate attachment implemented as full basal contact (FC) and 124 focal adhesions (FA), respectively, and \(\textit{E}_\mathrm{s}\,=\,\)140 KPa and (2) \(\textit{E}_\mathrm{s}\,=\,10\), 140, 1000, and 10,000 KPa, respectively, and FA attachment. The largest strains in cytosol, nucleus and cell membrane were higher for FC (1.35\(\text {e}^{-2}\), 0.235\(\text {e}^{-2}\) and 0.6\(\text {e}^{-2}\)) than for FA attachment (0.0952\(\text {e}^{-2}\), 0.0472\(\text {e}^{-2}\) and 0.05\(\text {e}^{-2}\)). For increasing \(\textit{E}_\mathrm{s}\), the largest maximum principal strain was 4.4\(\text {e}^{-4}\), 5\(\text {e}^{-4}\), 5.3\(\text {e}^{-4}\) and 5.3\(\text {e}^{-4}\) in the membrane, 9.5\(\text {e}^{-4}\), 1.1\(\text {e}^{-4}\), 1.2\(\text {e}^{-3}\) and 1.2\(\text {e}^{-3}\) in the cytosol, and 4.5\(\text {e}^{-4}\), 5.3\(\text {e}^{-4}\), 5.7\(\text {e}^{-4}\) and 5.7\(\text {e}^{-4}\) in the nucleus. The results show (1) the importance of representing FA in cell models and (2) higher cellular mechanical sensitivity for substrate stiffness changes in the range of cell stiffness. The latter indicates that matching substrate stiffness to cell stiffness, and moderate variation of the former is very effective for controlled variation of cell deformation. The developed methodology is useful for parametric studies on cellular mechanics to obtain quantitative data of subcellular strains and stresses that cannot easily be measured experimentally.  相似文献   

14.
A general mathematical model of anthrax (caused by Bacillus anthracis) transmission is formulated that includes live animals, infected carcasses and spores in the environment. The basic reproduction number \(\mathcal {R}_0\) is calculated, and existence of a unique endemic equilibrium is established for \(\mathcal {R}_0\) above the threshold value 1. Using data from the literature, elasticity indices for \(\mathcal {R}_0\) and type reproduction numbers are computed to quantify anthrax control measures. Including only herbivorous animals, anthrax is eradicated if \(\mathcal {R}_0 < 1\). For these animals, oscillatory solutions arising from Hopf bifurcations are numerically shown to exist for certain parameter values with \(\mathcal {R}_0>1\) and to have periodicity as observed from anthrax data. Including carnivores and assuming no disease-related death, anthrax again goes extinct below the threshold. Local stability of the endemic equilibrium is established above the threshold; thus, periodic solutions are not possible for these populations. It is shown numerically that oscillations in spore growth may drive oscillations in animal populations; however, the total number of infected animals remains about the same as with constant spore growth.  相似文献   

15.
Measles, a highly contagious infection caused by the measles virus, is a major public health problem in China. The reported measles cases decreased dramatically from 2004 to 2012 due to the mandatory measles vaccine program started in 2005 and the goal of eliminating measles by 2012. However, after reaching its lowest level in 2012, measles has resurged again since 2013. Since the monthly data of measles cases exhibit a seasonally fluctuating pattern, based on the measles model in Earn et al. (Science 287:667–670, 2000), we propose a susceptible, exposed, infectious, and recovered model with periodic transmission rate to investigate the seasonal measles epidemics and the effect of vaccination. We calculate the basic reproduction number \({\mathcal {R}}_{0}\), analyze the dynamical behavior of the model, and use the model to simulate the monthly data of measles cases reported in China. We also carry out some sensitivity analysis of \({\mathcal {R}}_{0}\) in the terms of various model parameters which shows that measles can be controlled and eventually eradicated by increasing the immunization rate, improving the effective vaccine management, and enhancing the awareness of people about measles.  相似文献   

16.
Despite major strides in the treatment of cancer, the development of drug resistance remains a major hurdle. One strategy which has been proposed to address this is the sequential application of drug therapies where resistance to one drug induces sensitivity to another drug, a concept called collateral sensitivity. The optimal timing of drug switching in these situations, however, remains unknown. To study this, we developed a dynamical model of sequential therapy on heterogeneous tumors comprised of resistant and sensitive cells. A pair of drugs (DrugA, DrugB) are utilized and are periodically switched during therapy. Assuming resistant cells to one drug are collaterally sensitive to the opposing drug, we classified cancer cells into two groups, \(A_\mathrm{R}\) and \(B_\mathrm{R}\), each of which is a subpopulation of cells resistant to the indicated drug and concurrently sensitive to the other, and we subsequently explored the resulting population dynamics. Specifically, based on a system of ordinary differential equations for \(A_\mathrm{R}\) and \(B_\mathrm{R}\), we determined that the optimal treatment strategy consists of two stages: an initial stage in which a chosen effective drug is utilized until a specific time point, T, and a second stage in which drugs are switched repeatedly, during which each drug is used for a relative duration (i.e., \(f \Delta t\)-long for DrugA and \((1-f) \Delta t\)-long for DrugB with \(0 \le f \le 1\) and \(\Delta t \ge 0\)). We prove that the optimal duration of the initial stage, in which the first drug is administered, T, is shorter than the period in which it remains effective in decreasing the total population, contrary to current clinical intuition. We further analyzed the relationship between population makeup, \(\mathcal {A/B} = A_\mathrm{R}/B_\mathrm{R}\), and the effect of each drug. We determine a critical ratio, which we term \(\mathcal {(A/B)}^{*}\), at which the two drugs are equally effective. As the first stage of the optimal strategy is applied, \(\mathcal {A/B}\) changes monotonically to \(\mathcal {(A/B)}^{*}\) and then, during the second stage, remains at \(\mathcal {(A/B)}^{*}\) thereafter. Beyond our analytic results, we explored an individual-based stochastic model and presented the distribution of extinction times for the classes of solutions found. Taken together, our results suggest opportunities to improve therapy scheduling in clinical oncology.  相似文献   

17.
Okra’s (Abelmoschus esculentus (L.) Moench) commercial cultivation is threatened in the tropics due to high incidence of yellow vein mosaic virus (YVMV) disease. Okra geneticists across the world tried to understand the inheritance pattern of YVMV disease tolerance without much success. Therefore, the inheritance pattern of YVMV disease in okra was revisited by employing six generations (\(\hbox {P}_{1}\), \(\hbox {P}_{2}\), \(\hbox {F}_{1}\), \(\hbox {F}_{2}\), \(\hbox {BC}_{1}\) and \(\hbox {BC}_{2}\)) of four selected crosses (one tolerant \(\times \) tolerant, two tolerant \(\times \) susceptible and one susceptible \(\times \) susceptible) using two tolerant (BCO-1 and Lal Bhendi) and two susceptible (Japanese Jhar Bhendi and PAN 2127) genotypes. Qualitative genetic analysis was done on the basis of segregation pattern of tolerant and susceptible plants in \(\hbox {F}_{2}\) and backcross generations of all the four crosses. It revealed that a single dominant gene along with some minor factors governed the disease tolerant trait in both the tolerant parents used. However, it was observed that genes governing disease tolerance identified in both the tolerant variety used was different. It could be concluded that the gene governing YVMV disease tolerance in okra was genotype specific. Further, duplicate gene action as evident from an approximate ratio of 15 : 1 (tolerant : susceptible) in the \(\hbox {F}_{2}\) population in the cross of two tolerant varieties gave a scope of increasing the tolerance level of the hybrid plants when both the tolerant genes are brought together. However, generation mean analysis revealed involvement of both additive and nonadditive effects in the inheritance of disease tolerance. Thus, the present study confirms that a complicated genetic inheritance pattern is involved in the disease tolerance against YVMV trait. The major tolerance genes could be transferred to other okra varieties, but the tolerance breaking virus strains might not allow them to achieve tolerance in stable condition. Therefore, accumulation of additional genes may be needed for a sustainable tolerance phenotype in okra.  相似文献   

18.
The present study aimed to investigate the association of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 with coronary artery disease (CAD) in a subgroup of north Indian population. In the present case–control study, CAD patients (\(n = 200\)) and age-matched, sex-matched and ethnicity-matched healthy controls (\(n = 200\)) were genotyped for polymorphisms in GSTP1 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Genotype distribution of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) polymorphisms of GSTP1 gene was significantly different between cases and controls (\(P = 0.005\) and 0.024, respectively). Binary logistic regression analysis showed significant association of A/G (odds ratio (OR): 1.6, 95% CI: 1.08–2.49, \(P = 0.020\)) and G/G (OR: 3.1, 95% CI: 1.41–6.71, P \(=\) 0.005) genotypes of GSTP1 \(\hbox {g}.313\hbox {A}{\!>\!}\hbox {G}\), and C/T (OR: 5.8, 95% CI: 1.26–26.34, \(P = 0.024\)) genotype of GSTP1 \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) with CAD. The A/G and G/G genotypes of \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) and C/T genotype of \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) conferred 6.5-fold increased risk for CAD (OR: 6.5, 95% CI: 1.37–31.27, \(P = 0.018\)). Moreover, the recessive model of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) is the best fit inheritance model to predict the susceptible gene effect (OR: 2.3, 95% CI: 1.11–4.92, \(P = 0.020\)). In conclusion, statistically significant associations of GSTP1 \(\hbox {g}.313\hbox {A}{>}\hbox {G}\) (A/G, G/G) and \(\hbox {g}.341\hbox {C}{>}\hbox {T}\) (C/T) genotypes with CAD were observed.  相似文献   

19.
Aberrant NSD2 methyltransferase activity is implicated as the oncogenic driver in multiple myeloma, suggesting opportunities for novel therapeutic intervention. The methyltransferase activity of NSD2 resides in its catalytic SET domain, which is conserved among most lysine methyltransferases. Here we report the backbone \(\hbox {H}^{\mathrm{N}}\), N, C\(^{\prime }\), \(\hbox {C}^\alpha\) and side-chain \(\hbox {C}^\beta\) assignments of a 25 kDa NSD2 SET domain construct, spanning residues 991–1203. A chemical shift analysis of C\(^{\prime }\), \(\hbox {C}^\alpha\) and \(\hbox {C}^\beta\) resonances predicts a secondary structural pattern that is in agreement with homology models.  相似文献   

20.
Changes in land use affect the terrestrial carbon stock through changes in the land cover. Research on land use and analysis of variations in carbon stock have practical applications in the optimization of land use and the mitigation of climate change effects. This study was conducted in Baixiang and Julu counties in the Taihang Piedmont by employing the trend analysis method to characterize the variation in county land use and carbon stock. The findings show that in both counties, agricultural and unused land areas decreased while built-up land area increased, and the reduction in cropland was the main reason behind the agricultural land reduction. An inflection point appeared on the cropland curves of Julu, because the cropland area decreased by 1576.97 hm\(^{2}\) from 2004 to 2006. Cropland area in Baixiang decreased from 1996 to 1998 by a total of 129.89 hm\(^{2}\) and then remained relatively stable after 1998. The total carbon storage and variation in land use in the two counties displayed similar trends. Total carbon reserves in Julu increased by 2.76 \(\times \) 10\(^{4}\) tC (carbon equivalent), while those in Baixiang decreased by 0.63 \(\times \) 10\(^{4}\) tC. Carbon stock of built-up land in Julu and Baixiang increased by 2.44 \(\times \) 10\(^{4}\) and 1.22 \(\times \) 10\(^{4}\) tC, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号