首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ostrich fern, Matteuccia struthiopteris L., contains two globulin spore storage proteins of 2.2 S and 11.3 S, with physical characteristics similar to those of seed storage proteins of Brassica napus (rapeseed) and Raphanus sativus (radish). By the use of a cloned cDNA that encodes the 1.7 S B. napus storage protein (napin), gene sequences that hybridized with napin were detected in fern nuclear DNA, and a 900-nucleotide homologous mRNA was detected in developing spores. In vitro translation of this fern mRNA produced a 22-kD polypeptide comparable in size to the 21-kD precursor polypeptide identified in Brassica. No hybridizations were observed between the Brassica 12 S clone and either fern DNA or developing spore mRNA.  相似文献   

2.
The spores of the fern Anemia phyllitidis contain abundant quantities of lipid as reserve material. Germination of these spores can be induced either by red light or, even in the dark, by gibberellic acid. The effects of both these factors on lipid degradation, lipase and isocitrate lyase activities, and on the fatty acid composition have been studied in the course of the germination process. During germination in darkness with gibberellic acid, the fatty acid composition remained similar to that in the ungerminated spore. In contrast, when spores were germinated in red light, α-linolenic acid was synthesized. Little activity of lipase and isocitrate lyase could be detected in the dry spore. Red light or gibberellic acid affected a dramatic increase of the activities of these enzymes. Lipid breakdown and lipase activity were more active in red light, however. Permanent stimuli were necessary for growth and complete lipid degradation. Induction of germination simultaneously with both factors revealed an additivity of the effects of red light and gibberellic acid.  相似文献   

3.
The light requirement for germination in spores of the fern Thelypteris kunthii (Desv.) Morton was fully satisfied by a long period of continuous red light or partially by intermittent, short periods of red light. Red light-potentiated spore germination was inhibited by brief far-red light irradiation, indicating phytochrome involvement. Repeated exposure of spores to prolonged red and short far-red irradiations, or exposure of red-potentiated spores to far-red light after an extended period in darkness, led to their escape from inhibition of germination by far-red light. Prolonged irradiation of spores with blue light before or after red light treatment partially antagonized the effect of red light.  相似文献   

4.
Early events during the germination of spores of the fern Onoclea sensibilis were studied to determine the time during germination when ethylene had its greatest inhibiting effect. Water imbibition by dry spores was rapid and did not appear to be inhibited by ethylene. During normal germination DNA synthesis occurred about four hours before the nucleus moved from a central position to the spore periphery. Following nuclear movement, mitosis and cell division occurred, partitioning the spore into a small rhizoid cell and a large protonemal cell. Cell division was complete approximately six hours after nuclear movement. Ethylene treatment of the spores blocked DNA synthesis, nuclear movement, and cell division. The earliest DNA replication in uninhibited spores was observed after 14 hours of germination, and the maximal rate of spore labeling with 3H-thymidine was between 16 and 20 hours. Spores were most sensitive to ethylene, however, during the stages of germination prior to DNA synthesis, and it was concluded that ethylene did not directly inhibit DNA replication but blocked germination at some earlier fundamental step. The effects of ethylene were reversible. since complete recovery from inhibition of germination was possible if ethylene was released and the spores were kept in light. Recovery was much slower in darkness. It was hypothesized that light acted photosynthetically to overcome the ethylene inhibition of germination. Consistent with this, it was shown that spores exhibit net photosynthesis after only two hours of germination.  相似文献   

5.
We investigated whether the gradual increase in phytochrome content in the fern Lygodium japonicum (Thunb.) Sw. during dark imbibition results from hydration or from biosynthesis of phytochrome. Addition of gabaculine or cycloheximide to the culture medium caused inhibitions of both red light-induced spore germination and of the appearance of phytochrome in the spores. Fifty percent inhibition of both red light-induced germination and of the appearance of phytochrome in the spores occurred at ca 107 M cycloheximide. Red light-induced germination and phytochrome appearance were markedly inhibited by 104 M and completely by 103 M gabaculine, but germination induced by gibberellic acid was unaffected. Phytochrome was not detected in spores after forced hydration. These results suggest that the increase in phytochrome during imbibition was mainly due to de novo synthesis of the phytochrome apoprotein and to synthesis of the chromophore and/or proteins required for phytochrome formation, rather than to hydration of preexisting phytochrome molecules.  相似文献   

6.
? Premise of the study: Fern spores are unicellular and haploid, making them a potential model system to study factors that regulate lifespan and mechanisms of aging. Aging rates of nongreen spores were measured to compare longevity characteristics among diverse fern species and test for orthodox response to storage temperature and moisture. ? Methods: Aging of spores from 10 fern species was quantified by changes in germination and growth parameters. Storage temperature ranged from ambient room to -196°C (liquid nitrogen); spores were dried to ambient relative humidity (RH) or using silica gel. ? Key results: Survival of spores varied under ambient storage conditions, with one species dying within a year and two species having greater than 50% survival after 3 years. Few changes in germination or growth were observed in spores stored at either -80°C or -196°C over the same 3-yr study period. Spores stored at -25°C aged anomalously quickly, especially those dried to ambient RH or subjected to repeated freeze-thaw cycles. ? Conclusions: Spore longevity is comparable to orthodox seed longevity under ambient storage conditions, with wide variation among species and shelflife extended by drying or cooling. However, faster aging during freezer storage may indicate a similar syndrome of damage experienced by seeds categorized as "intermediate". The damage is avoided by storage at -80°C or liquid nitrogen temperatures, making cryoconservation an effective and broadly applicable tool to extend fern spore longevity. The study demonstrates that spore banks are a feasible approach for ex situ conservation of this important plant group.  相似文献   

7.
Few vertebrates are known to consume ferns regularly. Several species of mammals consume leaves to some extent but the consumption of fern spores is much rare. In Galicia (Northwest Spain) we studied the seasonal variation in the consumption of Culcita macrocarpa fertile leaves (i.e. with spores) in two populations (Capelada and Eume), assessed whether consumption rate increased with fern population size, and evaluated whether the consumer was a spore predator or a spore disperser. Consumption began in December and finished by mid February, and occurred before spore release, which happened later in Capelada than in Eume, probably influenced by differences in altitude. The consumer was identified as Apodemus sylvaticus by DNA analysis of its droppings and by capture of live animals. Throughout Galicia there was a significant increase in fern consumption rate as the population size of C. macrocarpa increased. Germination tests from droppings were carried out in 14 dishes but only in two dishes 1% and 0.3% of the spores germinated. Our results suggest that woodmouse can disperse spores of C. macrocarpa, although most of the spores were digested.  相似文献   

8.
环境因子对蕨类植物孢子萌发的影响   总被引:1,自引:0,他引:1  
张正修  戴绍军 《生态学报》2010,30(7):1882-1893
蕨类植物通过孢子萌发形成独立生活的配子体,配子体能够形成精子器和颈卵器,进而通过受精作用形成新的孢子体。孢子萌发是蕨类植物生活史过程中配子体世代向孢子体世代转变的关键步骤。同时,此过程不仅受到多种环境因子的影响,也是研究细胞核极性移动、细胞不对称分裂、假根极性生长等独特的细胞学事件的良好模型。迄今为止,人们已经研究发现多种环境因子对约200余种蕨类植物孢子萌发有影响。总结了环境因子对蕨类植物孢子萌发影响的规律如下:(1)孢子萌发除了受到光照强度影响外,主要受光质的影响,光质的影响主要表现为4种方式:①孢子萌发受红光刺激与远红光抑制像开关一样调控;②孢子萌发不受远红光抑制;③孢子萌发受蓝光抑制;④孢子只能在黑暗条件下萌发。(2)重力作用会影响孢子细胞核移动,进而影响孢子细胞发育的极性。(3)赤霉素(GA)能增加孢子萌发率或帮助孢子打破休眠。成精子囊素与GA作用相似,启动或促进孢子萌发。而脱落酸(ABA)、茉莉酸(JA)和乙烯等其它激素对孢子萌发的影响相对较小。(4)不同植物孢子有着各自最适的萌发培养基条件,如不同种类孢子对MS培养基中无机盐含量、蔗糖含量、pH值的要求不同。孢子外被中的Ca2+、Mn2+和Mg2+,培养基中的Cd2+和La3+,以及孢子接种密度、萌发空间CO2含量也会对孢子萌发造成影响。(5)多数蕨类植物孢子在15-30℃可以萌发,最适萌发温度为25℃。(6)4℃和液氮储藏可以延长孢子寿命并保持较高萌发率。  相似文献   

9.
Freshwater and marine sediments often harbor reservoirs of plant diaspores, from which germination and establishment may occur whenever the sediment falls dry. Therewith, they form valuable records of historical inter- and intraspecific diversity, and are increasingly exploited to facilitate diversity establishment in new or restored nature areas. Yet, while ferns may constitute a considerable part of a vegetation’s diversity and sediments are known to contain fern spores, little is known about their longevity, which may suffer from inundation and - in sea bottoms - salt stress. We tested the potential of ferns to establish from a sea or lake bottom, using experimental studies on spore survival and gametophyte formation, as well as a spore bank analysis on sediments from a former Dutch inland sea. Our experimental results revealed clear differences among species. For Asplenium scolopendrium and Gymnocarpium dryopteris, spore germination was not affected by inundated storage alone, but decreased with rising salt concentrations. In contrast, for Asplenium trichomanes subsp. quadrivalens germination decreased following inundation, but not in response to salt. Germination rates decreased with time of storage in saline water. Smaller and less viable gametophytes were produced when saline storage lasted for a year. Effects on germination and gametophyte development clearly differed among genotypes of A. scolopendrium. Spore bank analyses detected no viable spores in marine sediment layers. Only two very small gametophytes (identified as Thelypteris palustris via DNA barcoding) emerged from freshwater sediments. Both died before maturation. We conclude that marine, and likely even freshwater sediments, will generally be of little value for long-term storage of fern diversity. The development of any fern vegetation on a former sea floor will depend heavily on the deposition of spores onto the drained land by natural or artificial means of dispersal.  相似文献   

10.
Changes in the polypeptide composition of chloroplasts were investigated during germination of green spores of the fern Osmunda japonica . The polypeptide composition of chloroplasts was appreciably changed during a germination time course of 48 h. Levels of five polypeptides with apparent molecular masses of 47, 44, 42, 22 and 18.5 kDa in the soluble fraction of chloroplasts and three polypeptides with molecular masses of 24, 22 and 15 kDa in the thylakoid membranes decreased during germination. In contrast, no decrease of chloroplast polypeptides was observed in the spores incubated with cycloheximide for 48 h. A new 22-kDa protein was isolated from thylakoid membranes of spores and the amino-terminal sequence of the purified protein was determined. High levels of alanine and glycine were found in the basic protein (pl > 10.3). This protein, with a native molecular mass of 80 kDa, was characterized by a subunit band observed at a molecular mass of 22 kDa on SDS-PAGE and by the disappearance of the band during spore germination. Protease activity against the 22-kDa protein was observed in an extract prepared from chloroplasts of quiescent spores. A hypothetical cytosolic proteinaceous factor is implicated in the regulation of protein degradation in chloroplasts.  相似文献   

11.
Although there are several species of ferns that are important components of many coastal ecosystems, the adaptations that allow these species to live in salty conditions have been studied only in two Acrostichum species. We have studied the effects of salt on germination, development of the gametophyte and sexual expression of the fern Asplenium marinum, which lives on coastal cliffs of Europe. Cultures at four different levels of salt concentration, 0%, 0.98%, 1.96% and 3.26%, were established for this purpose. Salt caused a significant delay in spore germination, and prevented it completely at high concentrations (3.26%). However, spores were able to recover germination ability after a period of seawater incubation once salinity concentrations decreased. Variable salinity conditions are a typical feature of sea cliffs where halophytes can grow. A salty culture medium also affects the development of the prothalli. Higher salinity of the substrate produced a significant decrease in gametophyte sizes, and affected the development of gametangia as well. Only males were found in a 0.98%-salt medium, and no gametangia were observed in cultures at 1.96%-salt medium. Recovered spores after one and a half month in high salinity concentration, 3.26%, were able, when transplanted to 0%-salt medium, to develop normal sexual prothalli, and this occurred in a shorter time than spores without any prior treatment. A. marinum can be considered as a halophyte fern that is able to germinate and grow in salty conditions. But it takes advantage of rainy periods that cause decrease of salt concentration, which seems to be important in particular for gametangia development and fertilization.  相似文献   

12.
Fatty acid composition of lipids isolated from spores of different fern groups show differences between the families whereas species variations within the families are smaller. As in seed fats, the spore lipids are mainly triglycerides, with the exception of Osmunda where free fatty acids accumulate. The spore lipids contain as major components oleic, linoleic, and palmitic acid although those of the sporophylls contain C-20 polyunsaturated acids.  相似文献   

13.
Desiccation tolerance and longevity of plant propagules in the dry state have significant implications for biotechnological applications. In this study fern spores were used as a unicellular model to characterize some of the mechanisms of ageing during dry storage of plant propagules (at relative humidity ca. 15%). More specifically, we compared the potential relationships among indicators of photo-oxidative stress and spore viability during dry storage between green (chlorophyllous) spores of Todea barbara and non-green spores of Christella dentata. Green spores stored under the light aged faster than those stored in the dark, and faster than light- and dark-stored non-green spores of C. dentata. This rapid ageing in light-stored green spores was associated with significantly lower antioxidant activity (relative to time zero and dark-stored spores) during storage, and a burst of hydrogen peroxide during the latter stages of storage, which was not a feature of dark-stored spores. We attribute these signs of enhanced oxidative-stress mediated ageing in light-stored spores to photo-oxidative processes, similar to those described in other homoiochlorophyllous organisms. Additionally, high antioxidant activity and low levels of reactive oxygen species in green spores compared with non-green spores suggests differing mechanisms of coping with life in the dry state.  相似文献   

14.
Germination of Microsporum gypseum macroconidia was accompanied by the release of alkaline protease, calcium ions, and inorganic phosphate into the germination fluid. The rate of germination was greatest during the first 2 hr, decreasing thereafter. This decrease in rate was accompanied by a decrease in protease activity, which was caused by an interaction of the enzyme with the inorganic phosphate released from the spores and accumulated in the germination medium after 2 hr. Germination of high spore densities was regulated by the ratio of released phosphate to protease protein, resulting in a constant percentage of germination at both high and low spore densities. A germination-defective mutant strain failed to germinate normally and released excessively high concentrations of phosphate into the germination medium during the initial 2 hr of incubation. Addition of calcium ions to germination mutant macroconidia stabilized spore morphology, prevented protease inactivation, and allowed normal germ-tube outgrowth. The germination of macroconidia appears to be regulated by the release of phosphate ions, which then inhibit the alkaline protease.  相似文献   

15.
During the first 96 h of culture, germinating spores of the fern Sphaeropteris cooperi (F. v. Muell.) Tryon showed a gradual rise in respiratory activity to a maximum of about 6.5 μl 02 h−1 mg−1 dry wt. This was followed by a transitory decline in rate, concluded by a second respiratory rise preceding the emergence of the rhizoid after 192 h of culture. Oxygen uptake during the first 120 h of germination was insensitive to 1 m M potassium cyanide (KCN) but was inhibited by 1 m M salicylhydroxamic acid (SHAM); however, beyond this time cyanide showed increasing inhibitory effectiveness whereas SHAM became less effective. Regardless of time of application, KCN had no effect on germination. Maximum inhibition of germination by SHAM was achieved if applied up to 120 h after culture initiation, after which spores became insensitive to SHAM. Heat treatment (50°C for 90 min) during the cyanide-resistant phase of respiration (0 h–120 h) induced cyanide-sensitive respiration and completely inhibited spore germination. Elevated temperatures had little effect if applied during the cyanide-sensitive phase (beyond 120 h). Temperature inhibited spores regained their ability to germinate if maintained in culture until the cyanide-resistant pathway was restored and then subjected to a second photoinductive light treatment. These results suggest the presence and possible involvement of the cyanide-resistant, alternative respiratory pathway during germination of Sphaeropteris cooperi spores.  相似文献   

16.
Changes in hydrolytic enzyme activities were investigated during spore germination ofAdiantum capillus-veneris L. The spores were incubated for 3 days in the dark at 25 C for imbibition, and then germination of the spores was induced by continuous irradiation with red light. At day 2 after onset of the red light irradiation, rhizoids appeared out of spore coats and protonemal cells became visible on the following day. Lipase occurred in dry spores and its activity decreased during 3 days of dark incubation. The activity started to increase when the spore germination was induced by red light irradiation. On the other hand, amylolytic and aminopeptidase activities which were also detected in dry spores decreased continuously during the dark incubation and following the germination process. RNase activity also decreased during 3 days of dark incubation but the activity was retained thereafter at a constant level with or without red light irradiation. Developmental patterns of these hydrolytic enzymes were classified into two groups: One decreased during imbibition and dark incubation but increased after red light irradiation and the other continuously decreased during dark incubation and germination. These results are discussed in relation to compositional changes of cell constitutions such as lipid, sugars, proteins and amino acids during spore germination.  相似文献   

17.
V. Raghavan 《Protoplasma》1993,175(1-2):75-84
Summary Chloroplast activities of dark-imbibed (non-germinating) and photoinduced (germinating) spores of the sensitive fern,Onoclea sensibilis were compared to gain insight into the germination process. There were no changes in the number of chloroplasts or in the chlorophyll contents of the spore during dark-imbibition and during the early phase of germination. Levels of increase in the Chloroplast DNA content of dark-imbibed and photoinduced spores were nearly the same and were associated with autoradiographic incorporation of [3H]thymidine into the cytoplasm. However, incorporation of the label into the nucleus occurred only during photoinduction of spores. Analysis of Chloroplast and nuclear DNA contents by dot-blot hybridization with labeled gene-specific probes has confirmed that chloroplast DNA content of the spore increases during dark-imbibition and photoinduction, while increase in nuclear DNA occurs only in photoinduced spores. Chloroplasts isolated from dark-imbibed and photoinduced spores incorporated [3H]TTP into an acid-insoluble fraction identified as DNA. The results show that physiological activities of chloroplasts of dark-imbibed and photoinduced spores ofO. sensibilis are similar and support an exclusive role for nuclear DNA synthesis in spore germination.  相似文献   

18.
The closely related fern generaHemionitis L. andGymnopteris Bernhardi are separated primarily on differences in leaf architecture and venation. Studies indicate that these characters are highly variable and unreliably diagnostic. Further, the type species of the two genera readily hybridize with each other. Spore morphology, as exhibited by SEM, does not support the traditional alignment of the species in these two genera: some species ofHemionitis andGymnopteris have the same rugose to papillate spores, while other species from both genera possess crested spores. The flavonoid chemistry of these taxa coincides with spore type, i.e., taxa from both genera which possess crested spores produce kaempferol and quercetin 3-0-glycosides, while species with tuberculate spores produce only quercetin 3,4′-0-glycosides. The spore and chemical data suggest a realignment of these taxa within a single genus, which would avoid the rather tenuous dependence on a single vegetative character for generic distinctions.  相似文献   

19.
Phytochromes in seed plants are known to move into nuclei in a red light-dependent manner with or without interacting factors. Here, we show phytochrome relocation to the nuclear region in phytochrome-dependent Adiantum capillus-veneris spore germination by partial spore-irradiation experiments. The nuclear or non-nuclear region of imbibed spores was irradiated with a microbeam of red and/or far-red light and the localization of phytochrome involved in spore germination was estimated from the germination rate. The phytochrome for spore germination existed throughout whole spore under darkness after imbibition, but gradually migrated to the nuclear region following red light irradiation. Intracellular distribution of PHY-GUS fusion proteins expressed in germinated spores by particle bombardment showed the migration of Acphy2, but not Acphy1, into nucleus in a red light-dependent manner, suggesting that Acphy2 is the photoreceptor for fern spore germination.  相似文献   

20.
Characteristics of the fern antheridogen from Ceratopteris thalictroides (L.) Brongn. are investigated. These are: (a) determination of molecular size (it is readily dialyzable), (b) pKa (about 5), (c) movement in thin layer chromatography, and (d) ability to induce dark germination of fern spores. These four characteristics are compared to the same characteristics of three other antheridogens (antheridogens A and B or GA). Molecular size and pKa are similar, but, the antheridogens are separable from each other using thin layer chromatography. It was also shown that spore germination is not induced by the Ceratopteris antheridogen, even in its own spores, a characteristic not reported as shared by the other antheridogens. However, the inconsistency of spore germination as an assay for antheridogen is demonstrated. The presence of gametophyte-produced allelopathic substances is also shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号