首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To identify non-quinazoline kinase inhibitors effective against drug resistant mutants of epidermal growth factor receptor (EGFR).METHODS: A kinase inhibitor library was subjected to screening for specific inhibition pertaining to the in vitro kinase activation of EGFR with the gatekeeper mutation T790M, which is resistant to small molecular weight tyrosine kinase inhibitors (TKIs) for EGFR in non-small cell lung cancers (NSCLCs). This inhibitory effect was confirmed by measuring autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells, an NSCLC cell line harboring the gatekeeper mutation. The effects of a candidate compound, Janus kinase 3 (JAK3) inhibitor VI, on cell proliferation were evaluated using the MTT assay and were compared between T790M-positive and -negative lung cancer cell lines. JAK3 inhibitor VI was modeled into the ATP-binding pocket of EGFR T790M/L858R. Potential physical interactions between the compound and kinase domains of wild-type (WT) or mutant EGFRs or JAK3 were estimated by calculating binding energy. The gatekeeper residues of EGFRs and JAKs were aligned to discuss the similarities among EGFR T790M and JAKs.RESULTS: We found that JAK3 inhibitor VI, a known inhibitor for JAK3 tyrosine kinase, selectively inhibits EGFR T790M/L858R, but has weaker inhibitory effects on the WT EGFR in vitro. JAK3 inhibitor VI also specifically reduced autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells upon EGF stimulation, but did not show the inhibitory effect on WT EGFR in A431 cells. Furthermore, JAK3 inhibitor VI suppressed the proliferation of NCI-H1975 cells, but showed limited inhibitory effects on the WT EGFR-expressing cell lines A431 and A549. A docking simulation between JAK3 inhibitor VI and the ATP-binding pocket of EGFR T790M/L858R predicted a potential binding status with hydrogen bonds. Estimated binding energy of JAK3 inhibitor VI to EGFR T790M/L858R was more stable than its binding energy to the WT EGFR. Amino acid sequence alignments revealed that the gatekeeper residues of JAK family kinases are methionine in WT, similar to EGFR T790M, suggesting that TKIs for JAKs may also be effective for EGFR T790M.CONCLUSION: Our findings demonstrate that JAK3 inhibitor VI is a gatekeeper mutant selective TKI and offer a strategy to search for new EGFR T790M inhibitors.  相似文献   

2.
Different cellular signal transduction cascades are affected by environmental stressors (UV-radiation, gamma-irradiation, hyperosmotic conditions, oxidants). In this study, we examined oxidative stress-evoked signal transduction pathways leading to activation of STATs in A431 carcinoma cells. Oxidative stress, initiated by addition of H2O2 (1-2 mM) to A431 cells, activates STAT3 and, to a lesser extent, STAT1 in dose- and time-dependent manner. Maximum phosphorylation levels were observed after a 2 minutes stimulation at 1-2 mM H2O2. Phosphorylation was blocked by AG1478, a pharmacological inhibitor of the epidermal growth factor receptor tyrosine kinase, implicating intrinsic EGF receptor tyrosine kinase in this process. Consistent with this observation, H2O2-stimulated EGFR tyrosine phosphorylation was abolished by specific Src kinase family inhibitor CGP77675, implicating Src in H2O2-induced EGFR activation. An essential role for Src and JAK2 in STATs activation was suggested by three findings. 1. Src kinase family inhibitor CGP77675 blocked STAT3 and STAT1 activation by H2O2 in a concentration-dependent manner. 2. In Src-/-fibroblasts, activation of both STAT3 and STAT1 by H2O2 was significantly attenuated. 3. Inhibiting JAK2 activity with the specific inhibitor AG490 reduced the level of H2O2-induced STAT3 phosphorylation, but not STAT1 in A431 cells. These data show essential roles for Src and JAK2 inactivation of STAT3. In contrast, H2O2-mediated activation of STAT1 requires only Src kinase activity. Herein, we postulate also that H2O2-induced STAT activation in carcinoma cells involves Src-dependent EGFR transactivation.  相似文献   

3.
STAT5A is a molecular regulator of proliferation, differentiation, and apoptosis in lymphohematopoietic cells. Here we show that STAT5A can serve as a functional substrate of Bruton's tyrosine kinase (BTK). Purified recombinant BTK was capable of directly binding purified recombinant STAT5A with high affinity (K(d) = 44 nm), as determined by surface plasmon resonance using a BIAcore biosensor system. BTK was also capable of tyrosine-phosphorylating ectopically expressed recombinant STAT5A on Tyr(694) both in vitro and in vivo in a Janus kinase 3-independent fashion. BTK phosphorylated the Y665F, Y668F, and Y682F,Y683F mutants but not the Y694F mutant of STAT5A. STAT5A mutations in the Src homology 2 (SH2) and SH3 domains did not alter the BTK-mediated tyrosine phosphorylation. Recombinant BTK proteins with mutant pleckstrin homology, SH2, or SH3 domains were capable of phosphorylating STAT5A, whereas recombinant BTK proteins with SH1/kinase domain mutations were not. In pull-down experiments, only full-length BTK and its SH1/kinase domain (but not the pleckstrin homology, SH2, or SH3 domains) were capable of binding STAT5A. Ectopically expressed BTK kinase domain was capable of tyrosine-phosphorylating STAT5A both in vitro and in vivo. BTK-mediated tyrosine phosphorylation of ectopically expressed wild type (but not Tyr(694) mutant) STAT5A enhanced its DNA binding activity. In BTK-competent chicken B cells, anti-IgM-stimulated tyrosine phosphorylation of STAT5 protein was prevented by pretreatment with the BTK inhibitor LFM-A13 but not by pretreatment with the JAK3 inhibitor HI-P131. B cell antigen receptor ligation resulted in enhanced tyrosine phosphorylation of STAT5 in BTK-deficient chicken B cells reconstituted with wild type human BTK but not in BTK-deficient chicken B cells reconstituted with kinase-inactive mutant BTK. Similarly, anti-IgM stimulation resulted in enhanced tyrosine phosphorylation of STAT5A in BTK-competent B cells from wild type mice but not in BTK-deficient B cells from XID mice. In contrast to B cells from XID mice, B cells from JAK3 knockout mice showed a normal STAT5A phosphorylation response to anti-IgM stimulation. These findings provide unprecedented experimental evidence that BTK plays a nonredundant and pivotal role in B cell antigen receptor-mediated STAT5A activation in B cells.  相似文献   

4.
YK Bae  JY Sung  YN Kim  S Kim  KM Hong  HT Kim  MS Choi  JY Kwon  J Shim 《PloS one》2012,7(9):e42441
The epidermal growth factor receptor (EGFR) is a well-established target for cancer treatment. EGFR tyrosine kinase (TK) inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK), a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R]), or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R]) in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv) phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor) and U0126 (a MEK inhibitor) were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.  相似文献   

5.
6.
Discovery of mutant-selective kinase inhibitors is one of the challenges in medicinal chemistry and is a main issue for epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. We tried to improve the selectivity of pan-HER inhibitors for mutant EGFRs. Utilizing click chemistry, triazole-tethered quinazoline derivatives were synthesized, based on a quinazoline scaffold showing pan-HER inhibition. The representative compound 5j exhibited 17- and 52-fold improved selectivity for EGFR L858R/T790M over wild-type EGFR and HER2, respectively, and demonstrated 6.7-fold more potent antiproliferative activity against PC9 cells harboring EGFR-activating mutation than gefitinib. Although the described quinazolines did not surpass pyrimidines as 3rd generation EGFR inhibitors in terms of selectivity for mutant EGFRs, our approach might provide information that would help in the identification of mutant-selective compounds among pan-HER inhibitors using the quinazoline scaffold.  相似文献   

7.
Mutations within the epidermal growth factor receptor (EGFR/erbB1/Her1) are often associated with tumorigenesis. In particular, a number of EGFR mutants that demonstrate ligand-independent signaling are common in non–small cell lung cancer (NSCLC), including kinase domain mutations L858R (also called L834R) and exon 19 deletions (e.g., ΔL747-P753insS), which collectively make up nearly 90% of mutations in NSCLC. The molecular mechanisms by which these mutations confer constitutive activity remain unresolved. Using multiple subdiffraction-limit imaging modalities, we reveal the altered receptor structure and interaction kinetics of NSCLC-associated EGFR mutants. We applied two-color single quantum dot tracking to quantify receptor dimerization kinetics on living cells and show that, in contrast to wild-type EGFR, mutants are capable of forming stable, ligand-independent dimers. Two-color superresolution localization microscopy confirmed ligand-independent aggregation of EGFR mutants. Live-cell Förster resonance energy transfer measurements revealed that the L858R kinase mutation alters ectodomain structure such that unliganded mutant EGFR adopts an extended, dimerization-competent conformation. Finally, mutation of the putative dimerization arm confirmed a critical role for ectodomain engagement in ligand-independent signaling. These data support a model in which dysregulated activity of NSCLC-associated kinase mutants is driven by coordinated interactions involving both the kinase and extracellular domains that lead to enhanced dimerization.  相似文献   

8.
Signalling by the epidermal growth factor (EGF) receptor (EGFR) has been studied intensively, but for most cell types the analysis is complicated by the fact that EGFR not only homodimerizes but can also form heterodimers with other EGFR family members. Heterodimerization is a particular problem in the study of EGFR mutants, where the true phenotype of the mutants is confounded by the contribution of the heterodimer partner to signal transduction. We have made use of the murine hemopoietic cell line BaF/3, which does not express EGFR family members, to express wild-type (WT) EGFR, three kinase-defective EGFR mutants (V741G, Y740F, and K721R), or a C-terminally truncated EGFR (CT957) and have measured their responses to EGF. We found that under the appropriate conditions EGF can stimulate cell proliferation of BaF/3 cells expressing WT or CT957 EGFRs but not that of cells expressing the kinase-defective mutants. However, EGF promotes the survival of BaF/3 cells expressing either of the kinase-defective receptors (V741G and Y740F), indicating that these receptors can still transmit a survival signal. Analysis of the early signalling events by the WT, V741G, and Y740F mutant EGF receptors indicated that EGF stimulates comparable levels of Shc phosphorylation, Shc–GRB-2 association, and activation of Ras, B-Raf, and Erk-1. Blocking the mitogen-activated protein kinase (MAPK) signalling pathway with the specific inhibitor PD98059 abrogates completely the EGF-dependent survival of cells expressing the kinase-defective EGFR mutants but has no effect on the EGF-dependent proliferation mediated by WT and CT957 EGFRs. Similarly, the Src family kinase inhibitor PP1 abrogates EGF-dependent survival without affecting proliferation. However blocking phosphatidylinositol-3-kinase or JAK-2 kinase with specific inhibitors does arrest growth factor-dependent cell proliferation. Thus, EGFR-mediated mitogenic signalling in BaF/3 cells requires an intact EGFR tyrosine kinase activity and appears to depend on the activation of both the JAK-2 and PI-3 kinase pathways. Activation of the Src family of kinases or of the Ras/MAPK pathway can, however, be initiated by a kinase-impaired EGFR and is linked to survival.  相似文献   

9.
10.
Mucin production by epithelial cells is modulated by many soluble factors, including epidermal growth factor (EGF). E-Cadherin promotes EGF receptor (EGFR)-mediated MUC5AC mucin production in airway epithelial cells in dense cultures, suggesting the involvement of E-cadherin in activating EGFRs and mucin production. However, the role of E-cadherin in modulating mucin production is not completely understood. We examined its role in MUC5AC production in a human lung epithelial cell line, NCI-H292. Treatment of low density NCI-H292 cells with an anti-E-cadherin monoclonal antibody (SHE78-7) inhibited cell-cell contact in the dispersed colonies, but promoted MUC5AC production. Furthermore, treatment of the NCI-H292 cells with anti-E-cadherin antibody stimulated phosphorylation of extracellular signal-regulated kinase (ERK). The enhanced production of MUC5AC was inhibited with an EGFR inhibitor and with a MEK inhibitor, but not with a Src family kinase inhibitor. These results suggest that inhibition of E-cadherin activates EGFRs independently of Src and promotes MUC5AC production through the ERK signaling pathway in sparsely cultured NCI-H292 cells.  相似文献   

11.
Mucin production by epithelial cells is modulated by many soluble factors, including epidermal growth factor (EGF). E-Cadherin promotes EGF receptor (EGFR)-mediated MUC5AC mucin production in airway epithelial cells in dense cultures, suggesting the involvement of E-cadherin in activating EGFRs and mucin production. However, the role of E-cadherin in modulating mucin production is not completely understood. We examined its role in MUC5AC production in a human lung epithelial cell line, NCI-H292. Treatment of low density NCI-H292 cells with an anti-E-cadherin monoclonal antibody (SHE78-7) inhibited cell-cell contact in the dispersed colonies, but promoted MUC5AC production. Furthermore, treatment of the NCI-H292 cells with anti-E-cadherin antibody stimulated phosphorylation of extracellular signal-regulated kinase (ERK). The enhanced production of MUC5AC was inhibited with an EGFR inhibitor and with a MEK inhibitor, but not with a Src family kinase inhibitor. These results suggest that inhibition of E-cadherin activates EGFRs independently of Src and promotes MUC5AC production through the ERK signaling pathway in sparsely cultured NCI-H292 cells.  相似文献   

12.
Many G protein-coupled receptors activate growth factor receptors, although the mechanisms controlling this transactivation are unclear. We have identified two proline-rich, SH3 binding sites (PXXP) in the carboxyl-terminal tail of the human P2Y(2) nucleotide receptor that directly associate with the tyrosine kinase Src in protein binding assays. Furthermore, Src co-precipitated with the P2Y(2) receptor in 1321N1 astrocytoma cells stimulated with the P2Y(2) receptor agonist UTP. A mutant P2Y(2) receptor lacking the PXXP motifs was found to stimulate calcium mobilization and serine/threonine phosphorylation of the Erk1/2 mitogen-activated protein kinases, like the wild-type receptor, but was defective in its ability to stimulate tyrosine phosphorylation of Src and Src-dependent tyrosine phosphorylation of the proline-rich tyrosine kinase 2, epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor. Dual immunofluorescence labeling of the P2Y(2) receptor and the EGFR indicated that UTP caused an increase in the co-localization of these receptors in the plasma membrane that was prevented by the Src inhibitor PP2. Together, these data suggest that agonist-induced binding of Src to the SH3 binding sites in the P2Y(2) receptor facilitates Src activation, which recruits the EGFR into a protein complex with the P2Y(2) receptor and allows Src to efficiently phosphorylate the EGFR.  相似文献   

13.
Overexpression of Met is a common finding in thyroid carcinomas. Recently, we reported on overexpression and ligand-independent constitutive activation of Met in anaplastic thyroid carcinoma cells. In the present study we have investigated a putative mechanism for this phenomenon. Cell lines with constitutively activated Met expressed both TGF-alpha mRNA and protein. Western blot analysis revealed expression of receptors for epidermal growth factor (EGFR) in all carcinoma cell lines; in tumor cells with elevated levels of TGF-alpha mRNA there was a constitutive tyrosine phosphorylation of the EGFRs. Preincubation of carcinoma cells with suramin decreased EGFR activation and downregulated Met expression as well as the ligand-independent phosphorylation of Met. Similar results were obtained with a EGFR tyrosine kinase inhibitor, AG 1478. The MEK inhibitor U0126 had an even more pronounced effect compared to AG 1478, indicating a Ras/MAPK-mediated signal in the regulation of Met expression and activation. Inhibition of EGFR signaling also decreased proliferation of the anaplastic thyroid carcinoma cells. Thus, aberrant activation of EGFRs may lead to an overexpression and activation of Met, which may be of importance for the malignant phenotype of anaplastic thyroid carcinomas.  相似文献   

14.
The present report provides evidence that, in A431 cells, interferon gamma (IFNgamma) induces the rapid (within 5 min), and reversible, tyrosine phosphorylation of the epidermal growth factor receptor (EGFR). IFNgamma-induced EGFR transactivation requires EGFR kinase activity, as well as activity of the Src-family tyrosine kinases and JAK2. Here, we show that IFNgamma-induced STAT1 activation in A431 and HeLa cells partially depends on the kinase activity of both EGFR and Src. Furthermore, in these cells, EGFR kinase activity is essential for IFNgamma-induced ERK1,2 activation. This study is the first to demonstrate that EGFR is implicated in IFNgamma-dependent signaling pathways.  相似文献   

15.
Deregulation of ErbB receptor-tyrosine kinases is a hallmark of many human cancers. Conserved in the ErbB family is a cluster of basic amino acid residues in the cytoplasmic juxtamembrane region. We found that charge-silencing mutagenesis within this juxtamembrane region of the epidermal growth factor receptor (EGFR) results in the generation of a mutant receptor (EGFR Mut R1-6) that spontaneously transforms NIH 3T3 cells in a ligand-independent manner. A similar mutant with one additional basic residue, EGFR Mut R1-5, fails to exhibit ligand-independent transformation. The capacity of EGFR Mut R1-6 to mediate this transformation is maintained when this mutant is retained in the endoplasmic reticulum via a single point mutation, L393H, which we describe. We show that EGFR Mut R1-6 with or without L393H exhibits enhanced basal tyrosine phosphorylation when ectopically expressed, and the ligand-independent transforming activity of EGFR Mut R1-6 is sensitive to inhibition of EGFR kinase activity and is particularly dependent on PI3K and mTOR activity. Similar to EGFR Mut R1-6/L393H in NIH 3T3 cells, EGFR variant type III, a highly oncogenic mutant form of EGFR linked to human brain cancers, confers transforming activity while it is wholly endoplasmic reticulum-retained in U87 cells. Our findings highlight the importance of the polybasic juxtamembrane sequence in regulating the oncogenic potential of EGFR signaling.  相似文献   

16.
Elevated circulatory free fatty acids (FFAs) especially saturated FFAs, such as palmitate (PA), are detrimental to the heart. However, mechanisms responsible for this phenomenon remain unknown. Here, the role of JAK2/STAT3 in PA-induced cytotoxicity was investigated in cardiomyocytes. We demonstrate that PA suppressed the JAK2/STAT3 pathway by dephosphorylation of JAK2 (Y1007/1008) and STAT3 (Y705), and thus blocked the translocation of STAT3 into the nucleus. Conversely, phosphorylation of S727, another phosphorylated site of STAT3, was increased in response to PA treatment. Pretreatment of JNK inhibitor, but not p38 MAPK inhibitor, inhibited STAT3 (S727) activation induced by PA and rescued the phosphorylation of STAT3 (Y705). The data suggested that JNK may be another upstream factor regulating STAT3, and verified the important function of P-STAT3 (Y705) in PA-induced cardiomyocyte apoptosis. Sodium orthovanadate (SOV), a protein tyrosine phosphatase inhibitor, obviously inhibited PA-induced apoptosis by restoring JAK2/STAT3 pathways. This effect was diminished by STAT3 inhibitor Stattic. Collectively, our data suggested a novel mechanism that the inhibition of JAK2/STAT3 activation was responsible for palmitic lipotoxicity and SOV may act as a potential therapeutic agent by targeting JAK2/STAT3 in lipotoxic cardiomyopathy treatment.  相似文献   

17.
18.
Leptin controls body weight by activating the long form of the leptin receptor (LEPRb). Janus kinase 2 (JAK2) is associated with LEPRb and autophosphorylates in response to leptin. JAK2 also phosphorylates LEPRb, STAT3, and multiple other downstream molecules. Surprisingly, here we show that JAK2 is not required for leptin stimulation of STAT3 phosphorylation. Leptin time- and dose-dependently stimulated tyrosine phosphorylation of STAT3 in both human and mouse JAK2-null cells. Leptin also increased the viability of JAK2-null cells. Overexpression of c-Src or Fyn, two Src family members, promoted STAT3 phosphorylation, whereas inhibition of the endogenous Src family members by either pharmacological inhibitors or dominant negative Src(K298M) decreased the ability of leptin to stimulate the phosphorylation of STAT3 and ERK1/2. Leptin also stimulated tyrosine phosphorylation of kinase-inactive JAK2(K882E) in JAK2-null cells. Overexpression of JAK2(K882E) enhanced the ability of leptin to stimulate STAT3 phosphorylation in JAK2-null cells. Tyr1138 in LEPRb was required for leptin-stimulated phosphorylation of STAT3 but not JAK2(K882E). These data suggest that leptin stimulates non-JAK2 tyrosine kinase(s), including the Src family members, which phosphorylate JAK2, STAT3, and other molecules downstream of LEPRb. JAK2 mediates leptin signaling by both phosphorylating its substrates and forming a signaling complex as a scaffolding/adaptor protein. The non-JAK2 kinase(s) and JAK2 may act coordinately and synergistically to mediate leptin response.  相似文献   

19.
20.
Chronic activation of the renin-angiotensin system plays a deleterious role in progressive kidney damage, and the renal proximal tubule is known to play an important role in tubulointerstitial fibrosis; however, the underlying molecular mechanism is unclear. Here we report that in the proximal tubule-like LLCPKcl4 cells expressing angiotensin II (Ang II) type 1 receptor, Ang II induced changes in cell morphology and expression of epithelial-to-mesenchymal transition (EMT) markers, which were inhibited by the miotogen-activated protein (MAP) kinase/extracellular signal-regulated kinase (ERK)-activating kinase (MEK) inhibitor PD98059 or the Src kinase inhibitor PP2. Ang II-stimulated phosphorylation of caveolin-1 (Cav) at Y14 and epidermal growth factor receptor (EGFR) at Y845 and induced association of these phosphoproteins in caveolin-enriched lipid rafts, thereby leading to prolonged EGFR-ERK signaling that was inhibited by Nox4 small interfering RNA (siRNA) and Src siRNA. Two different antioxidants not only inhibited phosphorylation of Src at Y416 but also blocked the EGFR-ERK signaling. Moreover, erlotinib (the EGFR tyrosine kinase inhibitor), EGFR siRNA, and Cav siRNA all inhibited both prolonged EGFR-ERK signaling and phenotypic changes induced by Ang II. Thus, this report provides the first evidence that reactive oxygen species (ROS)/Src-dependent activation of persistent Cav-EGFR-ERK signaling mediates renal tubular cell dedifferentiation and identifies a novel molecular mechanism that may be involved in progressive renal injury caused by chronic exposure to Ang II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号