首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
The hinge-region of the lac repressor plays an important role in the models for induction and DNA looping in the lac operon. When lac repressor is bound to a tight-binding symmetric operator, this region forms an alpha-helix that induces bending of the operator. The presence of the hinge-helices is questioned by previous data that suggest that the repressor does not bend the wild-type operator. We show that in the wild-type complex the hinge-helices are formed and the DNA is bent, similar to the symmetric complex. Furthermore, our data show differences in the binding of the DNA binding domains to the half-sites of the wild-type operator and reveal the role of the central base-pair of the wild-type operator in the repressor-operator interaction. The differences in binding to the operator half-sites are incorporated into a model that explains the relative affinities of the repressor for various lac operator sequences that contain left and right half-sites with different spacer lengths.  相似文献   

2.
Gal repressor dimer binds to two gal operator sites, OE and OI, which are 16 bp long similar sequences with hyphenated dyad symmetries (11,12). Repressor occupation hinders the reactivity of the N7 atoms in the major groups of guanines, located at positions 1, 3 and 8, and the rotational 1', 3' and 8' of the symmetries. We have shown that Gal repressor binding to OE or OI DNA fragments increases the circular dichroism (CD) spectral peak in the 270 to 300 nm range. The CD change is similar to that observed for Lac repressor binding to its operator site (14). It is consistent with a DNA conformational change during complex formation between Gal repressor and OE and OI DNA. The CD spectral change was not observed when the central 8,8' G-C base pairs in the DNA-protein complex were replaced by A-T base pairs, whereas substitution of the 1,1' G-C base pairs do show the accompanying increase in the spectra during repressor binding. The absence of CD change of the Gal repressor complex with DNA mutated at the 8,8' base pairs suggest that the central G-C base pairs are required for the repressor induced conformational change.  相似文献   

3.
We constructed expression libraries for Lac repressor mutants with amino acid exchanges in positions 1, 2, 5 and 9 of the recognition helix. We then analysed the interactions of residues 5 and 9 with operator variants bearing single or multiple symmetric base-pair exchanges in positions 3, 4 and 5 of the ideal fully symmetric lac operator. We isolated 37 independent Lac repressor mutants with five different amino acids in position 5 of the recognition helix that exhibit a strong preference for particular residues in position 2 and, to a lesser extent, in position 1 of the recognition helix. Our results suggest that residue 5 of the recognition helix (serine 21) contributes to the specific recognition of base-pair 4 of the lac operator. They further suggest that residue 9 of the recognition helix (asparagine 25) interacts non-specifically with a phosphate of the DNA backbone, possibly between base-pairs 2 and 3.  相似文献   

4.
Saturation mutagenesis of Tn10-encoded tet operator O1 was performed by chemical synthesis of 30 sequence variants yielding all possible point mutations of an operator half side. Their effect on Tet repressor binding was scored by an in-vivo repressor titration system. Tet repressor affinities of selected operator mutants were further characterized in vitro by dissociation rate measurements. The O1 sequence spans 19 base-pairs. Out of these, all 18 palindromic base-pairs are involved in Tet repressor recognition. The central base-pair does not contribute to sequence-specific binding of Tet repressor. At position 1 a pyrimidine residue is sufficient for maximal affinity to the repressor. At positions 2, 3 and 4, each mutation reduces repressor binding at least tenfold. Mutations at positions 5, 6, 7, 8 and 9 result in less drastic reductions of Tet repressor binding. Differential effects of mutations at a given position are used to deduce the chemical functions contacted by Tet repressor. The T.A to A.T transversion at position 9 increases Tet repressor affinity slightly, while all other mutations decrease repressor binding. The increased affinity of the wild-type tet operator O2 compared to wild-type O1 results from the addition of two favorable transversions at positions +/- 9 and an unfavorable T.A to C.G transition at position -7. Deletion or palindromic doubling of the central base-pair of the O1 palindrome reveals that the wild-type spacing of both operator half sides is crucial for efficient Tet repressor binding.  相似文献   

5.
In order to compare the structures of the DNA-binding sites on variants of the lac repressor, we have studied the influence of these variants on the dimethylsulfate methylation of the lac operator. Since a bound protein changes the availability of specific purines in the operator to this chemical attack, comparisons of the methylation patterns will show similarities or differences in the protein DNA contacts. We compared lac repressor, induced lac repressor (repressor bound to the gratuitous inducer isopropyl-β-d-thiogalactoside), mutant repressors having increased operator affinities (X86, I12 and the X86-I12 double mutant) and repressor peptides (long headpiece, residues 1 to 59 and short headpiece. residues 1 to 51). All of these repressors and repressor peptides exhibit the same general pattern of protection and enhancement in the operator; however, the short headpiece pattern differs most from that of the repressor while the induced repressor and the long headpiece show intermediate patterns that are strikingly similar to each other. The mutant repressors do not show an isopropyl-β-d-thiogalactoside effect but otherwise are almost indistinguishable from wild-type repressor. These results demonstrate that all molecules bind to the operator using basically the same protein-DNA contacts; they imply that (1) most and possibly all repressor contacts to operator lie within amino acids 1 to 51, (2) inducer weakens many contacts rather than totally disrupting one or even a few and (3) the tight-binding mutants do not make additional contacts to the DNA.These results are consistent with a model in which the amino-terminal portions of two repressor monomers make the DNA contacts. We show that one can understand the affinity of binding as related to the accuracy of the register of the two amino-terminal portions along the DNA. Furthermore, the action of inducer and the behaviour of the tight binding mutants can be accomodated within a two-state model in which the strongly or weakly binding states correspond to structures in which the amino-terminal regions are rigidly or loosely held with respect to each other.  相似文献   

6.
Two-dimensional nuclear Overhauser enhancement spectra are presented of the complex of lac repressor headpiece with a 14 base-pair lac operator fragment. Analysis of nuclear Overhauser enhancements observed between protein and DNA shows that the second helix of the headpiece ("the recognition helix") binds in the major groove of DNA as has been suggested, but that the orientation of this helix is approximately 180 degrees different from the proposed models.  相似文献   

7.
H M Sasmor  J L Betz 《Gene》1990,89(1):1-6
We have analyzed lac repressor binding in vivo and in vitro to several symmetric lac operator sequences. Two features of the operator appear to be important for repressor binding: sequence, both of the operator and of its extended regions, and the spacing of the operator halves. Host mutations that alter DNA superhelical density (topA, gyrB) did not change the relative affinity of cloned symmetric operator sequences for repressor. Analysis by dimethylsulfate methylation and DNaseI digestion of repressor-operator complexes indicated that repressor makes symmetric contacts with the symmetric operator, in contrast to its contacts with the two halves of the natural operator.  相似文献   

8.
Tight binding mutants of Lac repressor exhibit complex repression phenomena. In this work, in vivo Lac operator binding of three such mutants of E. coli Lac repressor (X86: ser 61-leu, l12: pro 3-tyr and the double mutant l12X86: pro 3-tyr, ser 61-leu) was analyzed. Repression of beta-galactosidase synthesis controlled by ideal lac operator and its 27 symmetric operator variants containing each possible base-pair at each single half-operator position in the presence of the tight-binding Lac repressor mutants was determined. The average increase of repression with all operator variants was about 3 fold with the X86 mutant. It was about 4 fold with the l12 mutant and about 2 fold with the double mutant l12X86 as compared to wildtype Lac repressor. The X86 mutant showed the same increase of affinity to all operator variants, whereas the l12 and l12X86 mutants exhibited lower repression with some variants than with most others. These results suggest that the X86 mutant has gained no additional specificity. In contrast the l12 mutant and the l12X86 mutant exhibit a relaxed specificity for certain base pairs in positions 1 and 3 of lac operator. This suggests that the extreme N-terminus of Lac repressor may interact with the inner base-pairs in the minor groove.  相似文献   

9.
The complex between lac repressor headpiece and short rodlike DNA fragments containing the lac operator sequence is characterised by measurements of the rotation diffusion. Using the method of electric dichroism we measure the rotation relaxation and determine changes in the length of the DNA upon ligand binding with high accuracy. According to these measurements any change in the length of the operator DNA upon binding of the first two headpiece molecules remains below 1A; the electric dichroism also remains virtually unchanged. At high degrees of (unspecific) binding we observe an increase in the rotation relaxation time, which is attributed to an increase of the apparent mean radius of the complex. As a control of our procedure for the determination of length changes we use the intercalation of ethidium bromide and arrive at an increase of the DNA length per bound ethidium of 3.2A (at 3.4A rise per base pair). The results obtained for the headpiece operator complex are not consistent with models assuming large changes of the DNA structure or intercalation of tyrosine residues.  相似文献   

10.
The 31P NMR spectra of various 14-base-pair lac operators bound to both wild-type and mutant lac repressor headpiece proteins were analyzed to provide information on the backbone conformation in the complexes. The 31P NMR spectrum of a wild-type symmetrical operator, d(TGTGAGCGCTCACA)2, bound to the N-terminal 56-residue headpiece fragment of a Y7I mutant repressor was nearly identical to the spectrum of the same operator bound to the wild-type repressor headpiece. In contrast, the 31P NMR spectrum of the mutant operator, d(TATAGAGCGCTCATA)2, wild-type headpiece complex was significantly perturbed relative to the wild-type repressor-operator complex. The 31P chemical shifts of the phosphates of a second mutant operator, d(TGTGTGCGCACACA)2, showed small but specific changes upon complexation with either the wild-type or mutant headpiece. The 31P chemical shifts of the phosphates of a third mutant operator, d(TCTGAGCGCTCAGA)2, showed no perturbations upon addition of the wild-type headpiece. The 31P NMR results provide further evidence for predominant recognition of the 5'-strand of the 5'-TGTGA/3'-ACACT binding site in a 2:1 protein to headpiece complex. It is proposed that specific, strong-binding operator-protein complexes retain the inherent phosphate ester conformational flexibility of the operator itself, whereas the phosphate esters are conformationally restricted in the weak-binding operator-protein complexes. This retention of backbone torsional freedom in strong complexes is entropically favorable and provides a new (and speculative) mechanism for protein discrimination of different operator binding sites. It demonstrates the potential importance of phosphate geometry and flexibility on protein recognition and binding.  相似文献   

11.
Crystal structures of the Lac repressor, with and without isopropyithiogalactoside (IPTG), and the repressor bound to operator have provided a model for how the binding of the inducer reduces the affinity of the repressor for the operator. However, because of the low resolution of the operator-bound structure (4.8 A), the model for the allosteric transition was presented in terms of structural elements rather than in terms of side chain interactions. Here we have constructed a dimeric Lac repressor and determined its structure at 2.6 A resolution in complex with a symmetric operator and the anti-inducer orthonitrophenylfucoside (ONPF). The structure enables the induced (IPTG-bound) and repressed (operator-bound) conformations of the repressor to be compared in atomic detail. An extensive network of interactions between the DNA-binding and core domains of the repressor suggests a possible mechanism for the allosteric transition.  相似文献   

12.
When the lac repressor tetramer is bound to its DNA operator, methylation protection shows the nearly symmetric operator half-sites are contacted asymmetrically. This asymmetric binding results from the DNA sequence/structure. The reported structure of lac repressor N-terminal fragment and an 11 base-pair operator left half-site provides no information concerning the effect of asymmetric binding, from left operator half-site to right half-site, upon the polypeptide backbone. We isolated uniformly 15N labeled 56 amino acid wild-type (HP56WT) and 64 residue mutant [Pro3>Tyr3] (HP64tyr3) lac repressor N-terminal DNA binding fragments for 1H/15N NMR studies with the left and right operators separately. Spectral coincidence of these longer fragments, indicating structural similarity with a protease derived 51 amino acid fragment for which the amide correlations are assigned, allows for assignment of the common amide resonances. For both HP56WT and HP64tyr3, spectral overlap of the amide correlation peaks reveals the polypeptide backbones of the uncomplexed polypeptides are structurally similar. Likewise the complexes of the peptides to the 11 base-pair lac left operator half-site are similar. On the other hand, complexes of HP56WT and the left compared to the right lac operator half-site show different residues of the polypeptide are affected by binding different half-sites of the operator. Thus, the DNA sequence/structure transmits asymmetry to the polypeptide backbone of the interacting protein.  相似文献   

13.
14.
The structures of a dimeric mutant of the Lac repressor DNA-binding domain complexed with the auxiliary operators O2 and O3 have been determined using NMR spectroscopy and compared to the structures of the previously determined Lac-O1 and Lac-nonoperator complexes. Structural analysis of the Lac-O1 and Lac-O2 complexes shows highly similar structures with very similar numbers of specific and nonspecific contacts, in agreement with similar affinities for these two operators. The left monomer of the Lac repressor in the Lac-O3 complex retains most of these specific contacts. However, in the right half-site of the O3 operator, there is a significant loss of protein-DNA contacts, explaining the low affinity of the Lac repressor for the O3 operator. The binding mode in the right half-site resembles that of the nonspecific complex. In contrast to the Lac-nonoperator DNA complex where no hinge helices are formed, the stability of the hinge helices in the weak Lac-O3 complex is the same as in the Lac-O1 and Lac-O2 complexes, as judged from the results of hydrogen/deuterium experiments.  相似文献   

15.
We have determined the sequences of the left and right operators of bacteriophages P22 and 21. The corresponding operators of the two phages have nearly identical sequences, thus explaining how the repressor of each phage recognizes the operators of the other. Experiments probing the binding of repressor and operator show that each operator contains three repressor binding sites. The repressor binding sites are 18 base-pair, partially symmetric sequences. The dispersed symmetric sequence A.T.AAG.…CTT.A.T is highly conserved among the 12 repressor binding sites of the two phages. Four virulent mutations have been sequenced; all of them alter bases in the conserved sequence.  相似文献   

16.
17.
The E. coli lactose operon, the paradigm of gene expression regulation systems, is the best model for studying the effect of radiation on such systems. The operon function requires the binding of a protein, the repressor, to a specific DNA sequence, the operator. We have previously shown that upon irradiation the repressor loses its operator binding ability. The main radiation-induced lesions of the headpiece have been identified by mass spectrometry. All tyrosine residues are oxidized into 3,4-dihydroxyphenylalanine (DOPA). In the present study we report a detailed characterization of the headpiece radiation-induced modification. An original approach combining circular dichroism measurements and the analysis of molecular dynamics simulation of headpieces bearing DOPA-s instead of tyrosines has been applied. The CD measurements reveal an irreversible modification of the headpiece structure and stability. The molecular dynamics simulation shows a loss of stability shown by an increase in internal dynamics and allows the estimation of the modifications due to tyrosine oxidation for each structural element of the protein. The changes in headpiece structure and stability can explain at least in part the radiation-induced loss of binding ability of the repressor to the operator. This conclusion should hold for all proteins containing radiosensitive amino acids in their DNA-binding site.  相似文献   

18.
BACKGROUND: Lactose repressor protein (Lac) controls the expression of the lactose metabolic genes in Escherichia coli by binding to an operator sequence in the promoter of the lac operon. Binding of inducer molecules to the Lac core domain induces changes in tertiary structure that are propagated to the DNA-binding domain through the connecting hinge region, thereby reducing the affinity for the operator. Protein-protein and protein-DNA interactions involving the hinge region play a crucial role in the allosteric changes occurring upon induction, but have not, as yet, been analyzed in atomic detail. RESULTS: We have used nuclear magnetic resonance (NMR) spectroscopy and restrained molecular dynamics (rMD) to determine the structure of the Lac repressor DNA-binding domain (headpeice 62; HP62) in complex with a symmetrized lac operator. Analysis of the structures reveals specific interactions between Lac repressor and DNA that were not found in previously investigated Lac repressor-DNA complexes. Important differences with the previously reported structures of the HP56-DNA complex were found in the loop following the helix-turn-helix (HTH) motif. The protein-protein and protein-DNA interactions involving the hinge region and the deformations in the DNA structure could be delineated in atomic detail. The structures were also used for comparison with the available crystallographic data on the Lac and Pur repressor-DNA complexes. CONCLUSIONS: The structures of the HP62-DNA complex provide the basis for a better understanding of the specific recognition in the Lac repressor-operator complex. In addition, the structural features of the hinge region provide detailed insight into the protein-protein and protein-DNA interactions responsible for the high affinity of the repressor for operator DNA.  相似文献   

19.
Summary A crude protein extract of Bacillus subtilis W23 contains a sequence-specific DNA binding activity for the xyl operator as detected by the gel mobility shift assay. A xylR determinant encoded on a multicopy plasmid leads to increased expression of this binding activity. In situ footprinting analysis of the protein-DNA complex in a polyacrylamide gel shows that the xyl operator is sequence-specifically bound and protected from cleavage by copper-phenanthroline at 26 phosphodiester bonds on each strand. Quantitative competition assays for repressor binding reveal that a 25 by synthetic xyl operator cloned into a polylinker is bound with the same affinity as the operator in the wild-type xyl regulatory region. This confirms that no additional sites in the wild-type sequence contribute to repressor binding. The xyl operator consists of ten palindromic base pairs flanking five central non-palindromic base pairs. A mutational analysis shows that the sequence of the central base pairs contributes to recognition by the repressor protein and that the spacing of the palindromic elements is crucial for repressor binding. An operator half site is not bound by the repressor. In vivo and in vitro induction studies suggest that, of several structurally similar sugars, xylose is the only molecular inducer of the Xyl repressor.  相似文献   

20.
How Lac repressor finds lac operator in vitro.   总被引:6,自引:0,他引:6  
Filter-binding and gel mobility shift assays were used to analyse the kinetics of the interaction of Lac repressor with lac operator. A comparison of the two techniques reveals that filter-binding assays with tetrameric Lac repressor have often been misinterpreted. It has been assumed that all complexes of Lac repressor and lac operator DNA bind with equal affinity to nitrocellulose filters. This assumption is wrong. Sandwich or loop complexes where two lac operators bind to one tetrameric Lac repressor are not or are only badly retained on nitrocellulose filters under normal conditions. Taking this into account, dimeric and tetrameric Lac repressor do not show any DNA-length dependence of their association and dissociation rate constants when they bind to DNA fragments smaller than 2455 base-pairs carrying a single symmetric ideal lac operator. A ninefold increased association rate to ideal lac operator on lambda DNA is observed for tetrameric but not dimeric Lac repressor. It is presumably due to intersegment transfer involving lac operator-like sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号