首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Clinical studies showed the contribution of viral infection to the development of asthma. Although mast cells have multiple roles in the pathogenesis of allergic asthma, their role of in the virus-associated pathogenesis of asthma remains unknown. Most respiratory viruses generate double-stranded (ds) RNA during their replication. dsRNA provokes innate immune responses. We recently showed that an administration of polyinocinic polycytidilic acid (poly IC), a mimetic of viral dsRNA, during allergen sensitization augments airway eosinophilia and hyperresponsiveness in mice via enhanced production of IL-13.

Methods

The effect of poly IC on allergen-induced airway eosinophilia was investigated for mast cell-conserved Kit+/+ mice and -deficient KitW/KitW-v mice. The outcome of mast cell reconstitution was further investigated.

Results

Airway eosinophilia and IL-13 production were augmented by poly IC in Kit+/+ mice but not in KitW/KitW-v mice. When KitW/KitW-v mice were reconstituted with bone marrow-derived mast cells (BMMCs), the augmentation was restored. The augmentation was not induced in the mice systemically deficient for TIR domain-containing adaptor-inducing IFN-β (TRIF) or interferon regulatory factor (IRF)-3, both mediate dsRNA-triggered innate immune responses. The augmentation was, however, restored in KitW/KitW-v mice reconstituted with TRIF-deficient or IRF-3-deficient BMMCs. Although leukotriene B4 and prostaglandin D2 are major lipid mediators released from activated mast cells, no their contribution was shown to the dsRNA-induced augmentation of airway eosinophilia.

Conclusions

We conclude that mast cells contribute to dsRNA-induced augmentation of allergic airway inflammation without requiring direct activation of mast cells with dsRNA or involvement of leukotriene B4 or prostaglandin D2.  相似文献   

2.
He JQ  Vu DM  Hunt G  Chugh A  Bhatnagar A  Bolli R 《PloS one》2011,6(11):e27719
The in vivo studies of myocardial infarct using c-kit+/Lin cardiac stem cells (CSCs) are still in the early stage with margin or no beneficial effects for cardiac function. One of the potential reasons may be related to the absence of fully understanding the properties of these cells both in vitro and in vivo. In the present study, we aimed to systematically examine how CSCs adapted to in vitro cell processes and whether there is any cell contamination after long-term culture. Human CSCs were enzymatically isolated from the atrial appendages of patients. The fixed tissue sections, freshly isolated or cultured CSCs were then used for identification of c-kit+/Lin cells, detection of cell contamination, or differentiation of cardiac lineages. By specific antibody staining, we demonstrated that tissue sections from atrial appendages contained less than 0.036% c-kit+/Lin cells. For the first time, we noted that without magnetic activated cell sorting (MACS), the percentages of c-kit+/Lin cells gradually increased up to ∼40% during continuously culture between passage 2 to 8, but could not exceed >80% unless c-kit MACS was carried out. The resulting c-kit+/Lin cells were negative for CD34, CD45, CD133, and Lin markers, but positive for KDR and CD31 in few patients after c-kit MACS. Lin depletion seemed unnecessary for enrichment of c-kit+/Lin cell population. Following induced differentiation, c-kit+/Lin CSCs demonstrated strong differentiation towards cardiomyocytes but less towards smooth and endothelial cells. We concluded that by using an enzymatic dissociation method, a large number, or higher percentage, of relative pure human CSCs with stable expression of c-kit+ could be obtained from atrial appendage specimens within ∼4 weeks following c-kit MACS without Lin depletion. This simple but cost-effective approach can be used to obtain enough numbers of stably-expressed c-kit+/Lin cells for clinical trials in repairing myocardial infarction.  相似文献   

3.
Experimental data suggest that cell‐based therapies may be useful for cardiac regeneration following ischaemic heart disease. Bone marrow (BM) cells have been reported to contribute to tissue repair after myocardial infarction (MI) by a variety of humoural and cellular mechanisms. However, there is no direct evidence, so far, that BM cells can generate cardiac stem cells (CSCs). To investigate whether BM cells contribute to repopulate the Kit+ CSCs pool, we transplanted BM cells from transgenic mice, expressing green fluorescent protein under the control of Kit regulatory elements, into wild‐type irradiated recipients. Following haematological reconstitution and MI, CSCs were cultured from cardiac explants to generate ‘cardiospheres’, a microtissue normally originating in vitro from CSCs. These were all green fluorescent (i.e. BM derived) and contained cells capable of initiating differentiation into cells expressing the cardiac marker Nkx2.5. These findings indicate that, at least in conditions of local acute cardiac damage, BM cells can home into the heart and give rise to cells that share properties of resident Kit+ CSCs.  相似文献   

4.

Aim

Iron deficiency is a common comorbidity in chronic heart failure (CHF) which may exacerbate CHF. The c-kit+ cardiac stem cells (CSCs) play a vital role in cardiac function repair. However, much is unknown regarding the role of iron deficiency in regulating c-kit+ CSCs function. In this study, we investigated whether iron deficiency regulates c-kit+ CSCs proliferation, migration, apoptosis, and differentiation in vitro.

Method

All c-kit+ CSCs were isolated from adult C57BL/6 mice. The c-kit+ CSCs were cultured with deferoxamine (DFO, an iron chelator), mimosine (MIM, another iron chelator), or a complex of DFO and iron (Fe(III)), respectively. Cell migration was assayed using a 48-well chamber system. Proliferation, cell cycle, and apoptosis of c-kit+ CSCs were analyzed with BrdU labeling, population doubling time assay, CCK-8 assay, and flow cytometry. Caspase-3 protein level and activity were examined with Western blotting and spectrophotometric detection. The changes in the expression of cardiac-specific proteins (GATA-4,TNI, and β-MHC) and cell cycle-related proteins (cyclin D1, RB, and pRB) were detected with Western blotting.

Result

DFO and MIM suppressed c-kit+ CSCs proliferation and differentiation. They also modulated cell cycle and cardiac-specific protein expression. Iron chelators down-regulated the expression and phosphorylation of cell cycle-related proteins. Iron reversed those suppressive effects of DFO. DFO and MIM didn’t affect c-kit+ CSCs migration and apoptosis.

Conclusion

Iron deficiency suppressed proliferation and differentiation of c-kit+ CSCs. This may partly explain how iron deficiency affects CHF prognosis.  相似文献   

5.
Cardiac cells marked by c-Kit or Kit, dubbed cardiac stem cells (CSCs), are in clinical trials to investigate their ability to stimulate cardiac regeneration and repair. These studies were initially motivated by the purported cardiogenic activity of these cells. Recent lineage tracing studies using Kit promoter to drive expression of the inducible Cre recombinase showed that these CSCs had highly limited cardiogenic activity, inadequate to support efficient cardiac repair. Here we reassess the lineage tracing data by investigating the identity of cells immediately after Cre labeling. Our instant lineage tracing approach identifies Kit-expressing cardiomyocytes, which are labeled immediately after tamoxifen induction. In combination with long-term lineage tracing experiments, these data reveal that the large majority of long-term labeled cardiomyocytes are pre-existing Kit-expressing cardiomyocytes rather than cardiomyocytes formed de novo from CSCs. This study presents a new interpretation for the contribution of Kit+ cells to cardiomyocytes and shows that Kit genetic lineage tracing over-estimates the cardiogenic activity of Kit+ CSCs.  相似文献   

6.
We and others have demonstrated that HDAC inhibition protects the heart against myocardial injury. It is known that Akt-1 and MAP kinase play an essential role in modulation of myocardial protection and cardiac preconditioning. Our recent observations have shown that Akt-1 was activated in post-myocardial infarction following HDAC inhibition. However, it remains unknown whether MKK3 and Akt-1 are involved in HDAC inhibition-induced myocardial protection in acute myocardial ischemia and reperfusion injury. We sought to investigate whether the genetic disruption of Akt-1 and MKK3 eliminate cardioprotection elicited by HDAC inhibition and whether Akt-1 is associated with MKK3 to ultimately achieve protective effects. Adult wild type and MKK3−/−, Akt-1−/− mice received intraperitoneal injections of trichostatin A (0.1mg/kg), a potent inhibitor of HDACs. The hearts were subjected to 30 min myocardial ischemia/30 min reperfusion in the Langendorff perfused heart after twenty four hours to elicit pharmacologic preconditioning. Left ventricular function was measured, and infarct size was determined. Acetylation and phosphorylation of MKK3 were detected and disruption of Akt-1 abolished both acetylation and phosphorylation of MKK3. HDAC inhibition produces an improvement in left ventricular functional recovery, but these effects were abrogated by disruption of either Akt-1 or MKK3. Disruption of Akt-1 or MKK3 abolished the effects of HDAC inhibition-induced reduction of infarct size. Trichostatin A treatment resulted in an increase in MKK3 phosphorylation or acetylation in myocardium. Taken together, these results indicate that stimulation of the MKK3 and Akt-1 pathway is a novel approach to HDAC inhibition -induced cardioprotection.  相似文献   

7.
Stem cell capability enhanced with cytokine administration is a promising treatment for myocardial infarction. Bone marrow stem cells (BMSCs) were isolated from C57BL/6 mice (8-12 weeks old) expressing GFP and characterized with c-kit and CD34. Infarcted heart tissue fragments were placed into dishes with BMSCs and medium supplemented with G-CSF, SCF, IGF-1 or combinations thereof were given to the BMSC-infarcted myocardium in vitro model. The IGF-1-G-CSF group showed significantly higher migration (67.7% ± 2.6) of c-kit+ BMSCs towards the ischemic tissue and expressed MEF-2 (43.7% ± 1.7). Of the single treatment groups, the G-CSF group demonstrated significantly higher migration of c-kit+ BMSCs (60.5 ± 2.7) with MEF-2 expression (38.7 ± 1.4). IGF-1 complements G-CSF and was relatively more significant in its effects on BMSC migration and cardiac lineage commitment towards ischemic heart tissue.  相似文献   

8.
Sirtuin-3 (Sirt3) has a critical role in the regulation of human aging and reactive oxygen species (ROS) formation. A recent study has identified Sirt3 as an essential regulator of stem cell aging. This study investigated whether Sirt3 is necessary for bone marrow cell (BMC)-mediated cardiac repair in post-myocardial infarction (MI). In vitro, BMC-derived endothelial progenitor cells (EPCs) from wild type (WT) and Sirt3KO mice were cultured. EPC angiogenesis, ROS formation and apoptosis were assessed. In vivo, WT and Sirt3 KO mice were subjected to MI and BMCs from WT and Sirt3 KO mice were injected into ischemic area immediately. The expression of VEGF and VEGFR2 was reduced in Sirt3KO-EPCs. Angiogenic capacities and colony formation were significantly impaired in Sirt3KO-EPCs compared to WT-EPCs. Loss of Sirt3 further enhanced ROS formation and apoptosis in EPCs. Overexpression of Sirt3 or treatment with NADPH oxidase inhibitor apocynin (Apo, 200 and 400 microM) rescued these abnormalities. In post-MI mice, BMC treatment increased number of Sca1+/c-kit+ cells; enhanced VEGF expression and angiogenesis whereas Sirt3KO-BMC treatment had little effects. BMC treatment also attenuated NADPH oxidase subunits p47phox and gp91phox expression, and significantly reduced ROS formation, apoptosis, fibrosis and hypertrophy in post-MI mice. Sirt3KO-BMC treatment did not display these beneficial effects. In contrast, Sirt3KO mice treated with BMCs from WT mice attenuated myocardial apoptosis, fibrosis and improved cardiac function. Our data demonstrate that Sirt3 is essential for BMC therapy; and loss of Sirt3 limits BMC-mediated angiogenesis and cardiac repair in post-MI.  相似文献   

9.
The unmet clinical need for myocardial repair after irreversible ischemic injury requires a better understanding of the biological properties of cardiac stem cells (CSCs). Using a primary culture of neonatal rat myocardial cells, we describe the formation and maturation of contracting cardiomyocyte colonies stemming from c-kit+, Sca+, or Isl1+ CSCs, which occurs in parallel to the hypertrophy of the major cardiac myocyte population. The contracting cardiomyocyte colonies (~1–2 colonies per 1 × 105 of myocardial cells) were identified starting from eighth day of culturing. At first, spontaneous weak, asynchronous, and arrhythmic contractions of the colonies at a rate of 2–3 beats/min were registered. Over time, the contractions of the colonies became more synchronous and frequent, with a contraction rate of 58–60 beats/min by the 30th day of culturing. The colonies were characterized by the CSCs subtype-specific pattern of growth and structure. The cells of the colonies were capable of spontaneous cardiomyogenic differentiation, demonstrating expression of both sarcomeric α-actinin and α-sarcomeric actin as well as the maturation of contractile machinery and typical Ca2+ responses to caffeine (5 mМ) and K+ (120 mМ). Electromechanical coupling, characterized by cardiac muscle-specific Ca2+-induced Ca2+ release, was evident at 3 weeks of culturing. Thus, the co-cultivation of CSCs with mature cardiac cells resulted in the formation of contracting cardiomyocyte colonies, resembling the characteristics of in vivo cardiomyogenesis. The proposed model can be used for the investigation of fundamental mechanisms underlying cardiomyogenic differentiation of CSCs as well as for drug testing and/or other applications.  相似文献   

10.
Enzymatic proteolysis by calpains, Ca2+-dependent intracellular cysteine proteases, has been implicated in pathological processes such as cellular degeneration or death. Here, we investigated the role of calpain activation in the hearts subjected to myocardial infarction. We produced myocardial infarction in Cast−/− mice deficient for calpastatin, the specific endogenous inhibitory protein for calpains, and Cast+/+ mice. The activity of cardiac calpains in Cast+/+ mice was not elevated within 1 day but showed a gradual elevation after 7 days following myocardial infarction, which was further pronounced in Cast−/− mice. Although the prevalence of cardiomyocyte death was indistinguishable between Cast−/− and Cast+/+ mice, Cast−/− mice exhibited profound contractile dysfunction and chamber dilatation and showed a significant reduction in survival rate after myocardial infarction as compared with Cast+/+ mice. Notably, immunofluorescence revealed that at 28 days after myocardial infarction, calpains were activated in cardiomyocytes exclusively at the border zone and that Cast−/− mice showed higher intensity and a broader extent of calpain activation at the border zone than Cast+/+ mice. In the border zone of Cast−/− mice, pronounced activation of calpains was associated with a decrease in N-cadherin expression and up-regulation of molecular markers for cardiac hypertrophy and fibrosis. In cultured rat neonatal cardiomyocytes, calpain activation by treatment with ionomycin induced cleavage of N-cadherin and decreased expression levels of β-catenin and connexin 43, which was attenuated by calpain inhibitor. These results thus demonstrate that activation of calpains disassembles cell-cell adhesion at intercalated discs by degrading N-cadherin and thereby promotes left ventricular remodeling after myocardial infarction.  相似文献   

11.

Background

Resident c-kit positive (c-kitpos) cardiac stem cells (CSCs) could be considered the most appropriate cell type for myocardial regeneration therapies. However, much is still unknown regarding their biological properties and potential.

Methodology/Principal Findings

We produced clones of high and low expressing GATA-4 CSCs from long-term bulk-cultured c-kitpos CSCs isolated from adult rat hearts. When c-kitpos GATA-4 high expressing clonal CSCs (cCSCs) were co-cultured with adult rat ventricular cardiomyocytes, we observed increased survival and contractility of the cardiomyocytes, compared to cardiomyocytes cultured alone, co-cultured with fibroblasts or c-kitpos GATA-4 low expressing cCSCs. When analysed by ELISA, the concentration of IGF-1 was significantly increased in the c-kitpos GATA-4 high cCSC/cardiomyocyte co-cultures and there was a significant correlation between IGF-1 concentration and cardiomyocyte survival. We showed the activation of the IGF-1 receptor and its downstream molecular targets in cardiomyocytes co-cultured with c-kitpos GATA-4 high cCSCs but not in cardiomyocytes that were cultured alone, co-cultured with fibroblasts or c-kitpos GATA-4 low cCSCs. Addition of a blocking antibody specific to the IGF-1 receptor inhibited the survival of cardiomyocytes and prevented the activation of its signalling in cardiomyocytes in the c-kitpos GATA-4 high cCSC/cardiomyocyte co-culture system. IGF-1 supplementation or IGF-1 high conditioned medium taken from the co-culture of c-kitpos GATA-4 high cCSCs plus cardiomyocytes did extend the survival and contractility of cardiomyocytes cultured alone and cardiomyocytes co-cultured with c-kitpos GATA-4 low cCSCs.

Conclusion/Significance

c-kitpos GATA-4 high cCSCs exert a paracrine survival effect on cardiomyocytes through induction of the IGF-1R and signalling pathway.  相似文献   

12.

Background

Use of peripheral blood- or bone marrow-derived progenitors for ischemic heart repair is a feasible option to induce neo-vascularization in ischemic tissues. These cells, named Endothelial Progenitors Cells (EPCs), have been extensively characterized phenotypically and functionally. The clinical efficacy of cardiac repair by EPCs cells remains, however, limited, due to cell autonomous defects as a consequence of risk factors. The devise of “enhancement” strategies has been therefore sought to improve repair ability of these cells and increase the clinical benefit.

Principal Findings

Pharmacologic inhibition of histone deacetylases (HDACs) is known to enhance hematopoietic stem cells engraftment by improvement of self renewal and inhibition of differentiation in the presence of mitogenic stimuli in vitro. In the present study cord blood-derived CD34+ were pre-conditioned with the HDAC inhibitor Valproic Acid. This treatment affected stem cell growth and gene expression, and improved ischemic myocardium protection in an immunodeficient mouse model of myocardial infarction.

Conclusions

Our results show that HDAC blockade leads to phenotype changes in CD34+ cells with enhanced self renewal and cardioprotection.  相似文献   

13.
Pathological cardiac hypertrophy is a classical hallmark of heart failure. At the molecular level, inhibition of histone deacetylase (HDAC) enzymes attenuate pathological cardiac hypertrophy in vitro and in vivo. Emodin is an anthraquinone that has been implicated in cardiac protection. However, it is not known if the cardio-protective actions for emodin are mediated through HDAC-dependent regulation of gene expression. Therefore, we hypothesized that emodin would attenuate pathological cardiac hypertrophy via inhibition of HDACs, and that these actions would be reflected in an emodin-rich food like rhubarb. In this study, we demonstrate that emodin and Turkish rhubarb containing emodin inhibit HDAC activity in vitro, with fast-on, slow-off kinetics. Moreover, we show that emodin increased histone acetylation in cardiomyocytes concomitant to global changes in gene expression; gene expression changes were similar to the well-established pan-HDAC inhibitor trichostatin A (TSA). We additionally present evidence that emodin inhibited phenylephrine (PE) and phorbol myristate acetate (PMA)-induced hypertrophy in neonatal rat ventricular myocytes (NRVMs). Lastly, we demonstrate that the cardioprotective actions of emodin are translated to an angiotensin II (Ang) mouse model of cardiac hypertrophy and fibrosis and are linked to HDAC inhibition. These data suggest that emodin blocked pathological cardiac hypertrophy, in part, by inhibiting HDAC-dependent gene expression changes.  相似文献   

14.
15.
Primary graft dysfunction (PGD), as characterized by pulmonary infiltrates and high oxygen requirements shortly after reperfusion, is the major cause of early morbidity and mortality after lung transplantation. Donor, recipient and allograft-handling factors are thought to contribute, although new insights regarding pathogenesis are needed to guide approaches to prevention and therapy. Mast cells have been implicated in ischemic tissue injury in other model systems and in allograft rejection, leading to the hypothesis that mast cell degranulation contributes to lung injury following reperfusion injury.We tested this hypothesis in a mouse model of PGD involving reversible disruption of blood flow to one lung. Metrics of injury included albumin permeability, plasma extravasation, lung histopathology, and mast cell degranulation. Responses were assessed in wild-type (Kit+/+) and mast cell-deficient (KitW-sh/W-sh) mice. Because mouse lungs have few mast cells compared with human lungs, we also tested responses in mice with lung mastocytosis generated by injecting bone marrow-derived cultured mast cells (BMCMC).We found that ischemic lung responses of mast cell-deficient KitW-sh/W-sh mice did not differ from those of Kit+/+ mice, even after priming for injury using LPS. Degranulated mast cells were more abundant in ischemic than in non-ischemic BMCMC-injected KitW-sh/W-sh lungs. However, lung injury in BMCMC-injected KitW-sh/W-sh and Kit+/+ mice did not differ in globally mast cell-deficient, uninjected KitW-sh/W-sh mice or in wild-type Kit+/+ mice relatively deficient in lung mast cells.These findings predict that mast cells, although activated in lungs injured by ischemia and reperfusion, are not necessary for the development of PGD.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0095-0) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Multiple mechanisms contribute to progressive cardiac dysfunction after myocardial infarction (MI) and inflammation is an important mediator. Mast cells (MCs) trigger inflammation after MI by releasing bio‐active factors that contribute to healing. c‐Kit‐deficient (KitW/W‐v) mice have dysfunctional MCs and develop severe ventricular dilatation post‐MI. We explored the role of MCs in post‐MI repair. Mouse wild‐type (WT) and KitW/W‐v MCs were obtained from bone marrow (BM). MC effects on fibroblasts were examined in vitro by proliferation and gel contraction assays. MCs were implanted into infarcted mouse hearts and their effects were evaluated using molecular, cellular and cardiac functional analyses. In contrast to WT, KitW/W‐v MC transplantation into KitW/W‐v mice did not improve cardiac function or scar size post‐MI. KitW/W‐v MCs induced significantly reduced fibroblast proliferation and contraction compared to WT MCs. MC influence on fibroblast proliferation was Basic fibroblast growth factor (bFGF)‐dependent and MC‐induced fibroblast contractility functioned through transforming growth factor (TGF)‐β. WT MCs transiently rescue cardiac function early post‐MI, but the benefits of BM cell implantation lasted longer. MCs induced increased inflammation compared to the BM‐injected mice, with increased neutrophil infiltration and infarct tumour necrosis factor‐α (TNF‐α) concentration. This augmented inflammation was followed by increased angiogenesis and myofibroblast formation and reduced scar size at early time‐points. Similar to the functional data, these beneficial effects were transient, largely vanishing by day 28. Dysfunctional KitW/W‐v MCs were unable to rescue cardiac function post‐MI. WT MC implantation transiently enhanced angiogenesis and cardiac function. These data suggest that increased inflammation is beneficial to cardiac repair, but these effects are not persistent.  相似文献   

18.
19.
Proliferation and epithelial–mesenchymal transition (EMT) of lens epithelium cells (LECs) may contribute to anterior subcapsular cataract (ASC) and posterior capsule opacification (PCO), which are important causes of visual impairment. Histone deacetylases (HDACs)-mediated epigenetic mechanism has a central role in controlling cell cycle regulation, cell proliferation and differentiation in a variety of cells and the pathogenesis of some diseases. However, whether HDACs are involved in the regulation of proliferation and EMT in LECs remain unknown. In this study, we evaluated the expression profile of HDAC family (18 genes) and found that class I and II HDACs were upregulated in transforming growth factor β2 (TGFβ2)-induced EMT in human LEC lines SRA01/04 and HLEB3. Tricostatin A (TSA), a class I and II HDAC inhibitor, suppressed the proliferation of LECs by G1 phase cell cycle arrest not only through inhibition of cyclin/CDK complexes and induction of p21 and p27, but also inactivation of the phosphatidylinositol-3-kinase/Akt, p38MAPK and ERK1/2 pathways. Meanwhile, TSA strongly prevented TGFβ2-induced upregulation of fibronectin, collagen type I, collagen type IV, N-cadherin, Snail and Slug. We also demonstrated that the underlying mechanism of TSA affects EMT in LECs through inhibiting the canonical TGFβ/Smad2 and the Jagged/Notch signaling pathways. Finally, we found that TSA completely prevented TGFβ2-induced ASC in the whole lens culture semi-in vivo model. Therefore, this study may provide a new insight into the pathogenesis of ASC and PCO, and suggests that epigenetic treatment with HDAC inhibitors may be a novel therapeutic approach for the prevention and treatment of ASC, PCO and other fibrotic diseases.  相似文献   

20.
Bai J  Wang Y  Liu L  Chen J  Yang W  Gao L  Wang Y 《Cytotechnology》2012,64(5):577-589
Amniotic fluid (AF) contains heterogeneous and multipotential cell types. A pure mesenchymal stem cells group can be sorted from AF using flow cytometry. In order to evaluate a possible therapeutic application of these cells, the human AF-derived c-kit+ stem cells (c-kit+ AFS) were compared with the c-kit (unselected) stem cells (c-kit AFS). Our findings revealed that the optimal period to obtain c-kit+ AFS cells was between 16 and 22 weeks of gestation. Following cell sorting, c-kit+ AFS cells shared similar morphological and proliferative characteristics as the c-kit AFS cells. Both c-kit+ and c-kit AFS cells had the characteristics of mesenchymal stem cells through surface marker identification by flow cytometric and immunocytochemical analysis. Both c-kit+ and c-kit AFS cells could differentiate along adipogenic and osteogenic lineages. However, the myocardial differentiation capacity was enhanced in c-kit+ AFS cells by detecting GATA-4, cTnT, α-actin, Cx43 mRNA and protein expression after myocardial induction; whereas induced c-kit AFS cells were only detected with GATA-4 mRNA and protein expression. The c-kit+ AFS cells could have potential clinical application for myogenesis in cardiac regenerative therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号