首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Major histocompatibility complex class I proteins play a key role in the recognition and presentation of peptide antigens to the host immune system. The structure of various major histocompatibility complex class I proteins has been determined experimentally in complex with several antigenic peptides. However, the structure in the unbound (empty) form is not known. To study the conformational dynamics of the empty major histocompatibility complex class I molecule comparative molecular dynamics simulations have been performed starting from the crystal structure of a peptide bound class I peptide-binding domain in the presence and absence of a peptide ligand. Simulations including the bound peptide stayed close to the experimental start structure at both simulation temperatures (300 and 355 K) during the entire simulation of 26 ns. Several independent simulations in the absence of peptide indicate that the empty domain may not adopt a single defined conformation but is conformationally significantly more heterogeneous in particular within the alpha-helices that flank the peptide binding cleft. The calculated conformational dynamics along the protein chain correlate well with available spectroscopic data and with the observed site-specific sensitivity of the empty class I protein to proteolytic digestion. During the simulations at 300 K the binding region for the peptide N-terminus stayed close to the conformation in the bound state, whereas the anchor region for the C-terminus showed significantly larger conformational fluctuations. This included a segment at the beginning of the second alpha-helix in the domain that is likely to be involved in the interaction with the chaperone protein tapasin during the peptide-loading process. The simulation studies further indicate that peptide binding at the C- and N-terminus may follow different mechanisms that involve different degrees of induced conformational changes in the peptide-binding domain. In particular binding of the peptide C-terminus may require conformational stabilization by chaperone proteins during peptide loading.  相似文献   

2.
3.
The biogenesis of respiratory complexes is a multistep process that requires finely tuned coordination of subunit assembly, metal cofactor insertion, and membrane-anchoring events. The dissimilatory nitrate reductase of the bacterial anaerobic respiratory chain is a membrane-bound heterotrimeric complex nitrate reductase A (NarGHI) carrying no less than eight redox centers. Here, we identified different stable folding assembly intermediates of the nitrate reductase complex and analyzed their redox cofactor contents using electron paramagnetic resonance spectroscopy. Upon the absence of the accessory protein NarJ, a global defect in metal incorporation was revealed. In addition to the molybdenum cofactor, we show that NarJ is required for specific insertion of the proximal iron-sulfur cluster (FS0) within the soluble nitrate reductase (NarGH) catalytic dimer. Further, we establish that NarJ ensures complete maturation of the b-type cytochrome subunit NarI by a proper timing for membrane anchoring of the NarGH complex. Our findings demonstrate that NarJ has a multifunctional role by orchestrating both the maturation and the assembly steps.  相似文献   

4.
The nar operon, coding for the respiratory nitrate reductase of Thermus thermophilus (NRT), encodes a di-heme b-type (NarJ) and a di-heme c-type (NarC) cytochrome. The role of both cytochromes and that of a putative chaperone (NarJ) in the synthesis and maturation of NRT was studied. Mutants of T. thermophilus lacking either NarI or NarC synthesized a soluble form of NarG, suggesting that a putative NarCI complex constitutes the attachment site for the enzyme. Interestingly, the NarG protein synthesized by both mutants was inactive in nitrate reduction and misfolded, showing that membrane attachment was required for enzyme maturation. Consistent with its putative role as a specific chaperone, inactive and misfolded NarG was synthesized by narJ mutants, but in contrast to its Escherichia coli homologue, NarJ was also required for the attachment of the thermophilic enzyme to the membrane. A bacterial two-hybrid system was used to demonstrate the putative interactions between the NRT proteins suggested by the analysis of the mutants. Strong interactions were detected between NarC and NarI and between NarG and NarJ. Weaker interaction signals were detected between NarI, but not NarC, and both NarG and NarH. These results lead us to conclude that the NRT is a heterotetrameric (NarC/NarI/NarG/NarH) enzyme, and we propose a model for its synthesis and maturation that is distinct from that of E. coli. In the synthesis of NRT, a NarCI membrane complex and a soluble NarGJH complex are synthesized in a first step. In a second step, both complexes interact at the cytoplasmic face of the membrane, where the enzyme is subsequently activated with the concomitant conformational change and release of the NarJ chaperone from the mature enzyme.  相似文献   

5.
The formation of active membrane-bound nitrate reductase A in Escherichia coli requires the presence of three subunits, NarG, NarH and NarI, as well as a fourth protein, NarJ, that is not part of the active nitrate reductase. In narJ strains, both NarG and NarH subunits are associated in an unstable and inactive NarGH complex. A significant activation of this complex was observed in vitro after adding purified NarJ-6His polypeptide to the cell supernatant of a narJ strain. Once the apo-enzyme NarGHI of a narJ mutant has become anchored to the membrane via the NarI subunit, it cannot be reactivated by NarJ in vitro . NarJ protein specifically recognizes the catalytic NarG subunit. Fluorescence, electron paramagnetic resonance (EPR) spectroscopy and molybdenum quantification based on inductively coupled plasma emission spectroscopy (ICPES) clearly indicate that, in the absence of NarJ, no molybdenum cofactor is present in the NarGH complex. We propose that NarJ is a specific chaperone that binds to NarG and may thus keep it in an appropriate competent-open conformation for the molybdenum cofactor insertion to occur, resulting in a catalytically active enzyme. Upon insertion of the molybdenum cofactor into the apo-nitrate reductase, NarJ is then dissociated from the activated enzyme.  相似文献   

6.
Histone chaperones are a diverse class of proteins that facilitate chromatin assembly. Their ability to stabilize highly abundant histone proteins in the cellular environment prevents non-specific interactions and promotes nucleosome formation, but the various mechanisms for doing so are not well understood. We now focus on the dynamic features of the DAXX histone chaperone that have been elusive from previous structural studies. Using hydrogen/deuterium exchange coupled to mass spectrometry (H/DX-MS), we elucidate the concerted binding-folding of DAXX with histone variants H3.3/H4 and H3.2/H4 and find that high local stability at the variant-specific recognition residues rationalizes its known selectivity for H3.3. We show that the DAXX histone binding domain is largely disordered in solution and that formation of the H3.3/H4/DAXX complex induces folding and dramatic global stabilization of both histone and chaperone. Thus, DAXX uses a novel strategy as a molecular chaperone that paradoxically couples its own folding to substrate recognition and binding. Further, we propose a model for the chromatin assembly reaction it mediates, including a stepwise folding pathway that helps explain the fidelity of DAXX in associating with the H3.3 variant, despite an extensive and nearly identical binding surface on its counterparts, H3.1 and H3.2.  相似文献   

7.
The RAG1 and RAG2 proteins together constitute the nuclease that initiates the assembly of immunoglobulin and T cell receptor genes in a reaction known as V(D)J recombination. RAG1 plays a central role in recognition of the recombination signal sequence (RSS) by the RAG1/2 complex. To investigate the parameters governing the RAG1-RSS interaction, the murine core RAG1 protein (amino acids 377-1008) fused to a short Strep tag has been purified to homogeneity from bacteria. The Strep-RAG1 (StrRAG1) protein exists as a dimer at a wide range of protein concentrations (25-500 nM) in the absence of DNA and binds with reasonably high affinity and specificity (apparent K(D) = 41 nM) to the RSS. Both electrophoretic mobility shift assays and polarization anisotropy experiments indicate that only a single StrRAG1-DNA species exists in solution. Anisotropy decay measured by frequency domain spectroscopy suggests that the complex contains a dimer of StrRAG1 bound to a single DNA molecule. Using measurements of protein intrinsic fluorescence and circular dichroism, we demonstrate that StrRAG1 undergoes a major conformational change upon binding the RSS. Steady-state fluorescence and acrylamide quenching studies reveal that this conformational change is associated with a repositioning of intrinsic protein fluorophores from a hydrophobic to a solvent-exposed environment. RSS-induced conformational changes of StrRAG1 may influence the interaction of RAG1 with RAG2 and synaptic complex formation.  相似文献   

8.
Initiation of bacteriophage Mu DNA replication by transposition requires the disassembly of the transpososome that catalyses strand exchange and the assembly of a replisome promoted by PriA, PriB, PriC and DnaT proteins, which function in the host to restart stalled replication forks. Once the molecular chaperone ClpX weakens the very tight binding of the transpososome to the Mu ends, host disassembly factors (MRFalpha-DF) promote the dissociation of the transpososome from the DNA template and the assembly of a new nucleoprotein complex. Prereplisome factors (MRFalpha-PR) further alter the complex, allowing PriA binding and loading of major replicative helicase DnaB onto the template promoted by the restart proteins. MRFalpha-PR is essential for DnaB loading by restart proteins even on the deproteinized Mu fork whereas MRFalpha-DF is not required on the deproteinized template. When the transition from transpososome to replisome was reconstituted using MRFalpha-DF and MRFalpha-PR, initiation of Mu DNA replication was strictly dependent upon added PriC and PriA helicase. In contrast, initiation on the deproteinized template was predominantly dependent upon PriB and did not require PriA's helicase activity. The results indicate that transition mechanisms beginning with the transpososome disassembly can determine the pathway of replisome assembly by restart proteins.  相似文献   

9.
Large oligomeric portal assemblies have a central role in the life-cycles of bacteriophages and herpesviruses. The stoichiometry of in vitro assembled portal proteins has been a subject of debate for several years. The intrinsic polymorphic oligomerization of ectopically expressed portal proteins makes it possible to form rings of diverse stoichiometry (e.g., 11-mer, 12-mer, 13-mer, etc.) in solution. In this study, we have investigated the stoichiometry of the in vitro-assembled portal protein of bacteriophage P22 and characterized its association with the tail factor gp4. Using native mass spectrometry, we show for the first time that the reconstituted portal protein (assembled in vitro using a modified purification and assembly protocol) is exclusively dodecameric. Under the conditions used here, 12 copies of tail factor gp4 bind to the portal ring, in a cooperative fashion, to form a 12:12 complex of 1.050 MDa. We applied tandem mass spectrometry to the complete assembly and found an unusual dimeric dissociation pattern of gp4, suggesting a dimeric sub-organization of gp4 when assembled with the portal ring. Furthermore, native and ion mobility mass spectrometry reveal a major conformational change in the portal upon binding of gp4. We propose that the gp4-induced conformational change in the portal ring initiates a cascade of events assisting in the stabilization of newly filled P22 particles, which marks the end of phage morphogenesis.  相似文献   

10.
Dupureur CM 《Biochemistry》2005,44(13):5065-5074
Sequence specific DNA binding proteins are thought to adopt distinct conformations when binding to target (cognate) and nontarget (noncognate) sequences. There is both biochemical and crystallographic evidence that this behavior is important in mediating sequence recognition by the Mg(II)-dependent type II restriction enzymes. Despite this, there are few systematic comparisons of the structural behavior of these enzymes in various complexes. Here, (1)H-(15)N HSQC NMR spectroscopy is applied to PvuII endonuclease (2 x 18 kDa) in an effort to better understand the relationship between sequence recognition and enzyme conformational behavior. Spectra of the free enzyme collected in the absence and presence of metal ions indicate that while there is a modest backbone conformational response upon binding Ca(II), this does not occur with Mg(II). Substrate binding itself is accompanied by very dramatic spectral changes consistent with a large-scale conformational response. HSQC spectra of the enzyme bound to cognate (specific) and noncognate (nonspecific) oligonucleotides in the presence of Ca(II) are dramatically distinct, revealing for the first time the structural uniqueness of a PvuII cognate complex in solution. The strong correlation between NMR spectral overlap and crystallographic data (C(alpha) rmsd) permits characterization of the nonspecific PvuII complex as being more similar to the free enzyme than to the specific complex. Collectively, these data support the notion that it is the DNA, not the metal ion, which promotes a unique conformational response by the enzyme. It therefore follows that the principle role of metal ions in complex formation is one of driving substrate affinity and stability rather than conformationally priming the enzyme for substrate binding and sequence recognition. These results not only provide valuable insights into the mechanism of protein-DNA interactions but also demonstrate the utility of NMR spectroscopy in structure-function studies of these representative nucleic acid systems.  相似文献   

11.
Understanding when and how metal cofactor insertion occurs into a multisubunit metalloenzyme is of fundamental importance. Molybdenum cofactor insertion is a tightly controlled process that involves specific interactions between the proteins that promote cofactor delivery, enzyme-specific chaperones, and the apoenzyme. In the assembly pathway of the multisubunit molybdoenzyme, membrane-bound nitrate reductase A from Escherichia coli, a NarJ-assisted molybdenum cofactor (Moco) insertion step, must precede membrane anchoring of the apoenzyme. Here, we have shown that the NarJ chaperone interacts at two distinct binding sites of the apoenzyme, one interfering with its membrane anchoring and another one being involved in molybdenum cofactor insertion. The presence of the two NarJ-binding sites within NarG is required to ensure productive formation of active nitrate reductase. Our findings supported the view that enzyme-specific chaperones play a central role in the biogenesis of multisubunit molybdoenzymes by coordinating subunits assembly and molybdenum cofactor insertion.  相似文献   

12.
Protein interactions are often accompanied by significant changes in conformation. We have analyzed the relationships between protein structures and the conformational changes they undergo upon binding. Based upon this, we introduce a simple measure, the relative solvent accessible surface area, which can be used to predict the magnitude of binding-induced conformational changes from the structures of either monomeric proteins or bound subunits. Applying this to a large set of protein complexes suggests that large conformational changes upon binding are common. In addition, we observe considerable enrichment of intrinsically disordered sequences in proteins predicted to undergo large conformational changes. Finally, we demonstrate that the relative solvent accessible surface area of monomeric proteins can be used as a simple proxy for protein flexibility. This reveals a powerful connection between the flexibility of unbound proteins and their binding-induced conformational changes, consistent with the conformational selection model of molecular recognition.  相似文献   

13.
Makokha M  Hare M  Li M  Hays T  Barbar E 《Biochemistry》2002,41(13):4302-4311
The interactions of three subunits of cytoplasmic dynein from Drosophila melanogaster, LC8, Tctex-1, and the N-terminal domain of IC74 (N-IC74, residues 1-289), were characterized in vitro by affinity methods, limited proteolysis, and circular dichroism spectroscopy. These subunits were chosen for study because they are presumed to promote the assembly of the complex and to be engaged in the controlled binding and release of cargo. Limited proteolysis and mass spectrometry of N-IC74 in the presence of LC8 and Tctex-1 localized binding of Tctex-1 to the vicinity of K104 and K105, and localized binding of LC8 to the region downstream of K130. Circular dichroism, fluorescence, sedimentation velocity, and proteolysis studies indicate that N-IC74 has limited secondary and tertiary structure at near physiological solution conditions. Upon addition of LC8, N-IC74 undergoes a significant conformational change from largely unfolded to a more ordered structure. This conformational change is reflected in increased global protection of N-IC74 from proteolytic digestion following the interaction, and in a significant change in the CD signal. A smaller but reproducible change in the CD spectra was observed upon Tctex-1 binding as well. The increased structure introduced into N-IC74 upon light chain binding suggests a mechanism by which LC8 and Tctex-1 may regulate the assembly of the dynein complex.  相似文献   

14.
We used spin-labeled nucleotide analogs and fluorescence spectroscopy to monitor conformational changes at the nucleotide-binding site of wild-type Dictyostelium discoideum (WT) myosin and a construct containing a single tryptophan at position F239 near the switch 1 loop. Electron paramagnetic resonance (EPR) spectroscopy and tryptophan fluorescence have been used previously to investigate changes at the myosin nucleotide site. A limitation of fluorescence spectroscopy is that it must be done on mutated myosins containing only a single tryptophan. A limitation of EPR spectroscopy is that one infers protein conformational changes from alterations in the mobility of an attached probe. These limitations have led to controversies regarding conclusions reached by the two approaches. For the first time, the data presented here allow direct correlations to be made between the results from the two spectroscopic approaches on the same proteins and extend our previous EPR studies to a nonmuscle myosin. EPR probe mobility indicates that the conformation of the nucleotide pocket of the WT⋅SLADP (spin-labeled ADP) complex is similar to that of skeletal myosin. The pocket is closed in the absence of actin for both diphosphate and triphosphate nucleotide states. In the actin⋅myosin⋅diphosphate state, the pocket is in equilibrium between closed and open conformations, with the open conformation slightly more favorable than that seen for fast skeletal actomyosin. The EPR spectra for the mutant show similar conformations to skeletal myosin, with one exception: in the absence of actin, the nucleotide pocket of the mutant displays an open component that was approximately 4-5 kJ/mol more favorable than in skeletal or WT myosin. These observations resolve the controversies between the two techniques. The data from both techniques confirm that binding of myosin to actin alters the conformation of the myosin nucleotide pocket with similar but not identical energetics in both muscle and nonmuscle myosins.  相似文献   

15.
Understanding molecular principles underlying Hsp90 chaperone functions and modulation of client activity is fundamental to dissect activation mechanisms of many proteins. In this work, we performed a computational investigation of the Hsp90-Hsp70-Hop-CR client complex to examine allosteric regulatory mechanisms underlying dynamic chaperone interactions and principles of chaperone-dependent client recognition and remodeling. Conformational dynamics analysis using high-resolution coarse-grained simulations and ensemble-based local frustration analysis suggest that the Hsp90 chaperone could recognize and recruit the GR client by invoking reciprocal dynamic exchanges near the intermolecular interfaces with the client. Using mutational scanning of the intermolecular residues in the Hsp90-Hsp70-Hop-GR complex, we identified binding energy hotspots in the regulatory complex. Perturbation-based network analysis and dynamic fluctuations-based modeling of allosteric residue potentials are employed for a detailed analysis of allosteric interaction networks and identification of conformational communication switches. We found that allosteric interactions between the Hsp90, the client-bound Hsp70 and Hop cochaperone can define two allosteric residue clusters that control client recruitment in which the intrinsic Hsp70 allostery is exploited to mediate integration of the Hsp70-bound client into the Hsp90 chaperone system. The results suggest a model of dynamics-driven allostery that enables efficient client recruitment and loading through allosteric couplings between intermolecular interfaces and communication switch centers. This study showed that the Hsp90 interactions with client proteins may operate under dynamic-based allostery in which ensembles of preexisting conformational states and intrinsic allosteric pathways present in the Hsp90 and Hsp70 chaperones can be exploited for recognition and integration of substrate proteins.  相似文献   

16.
17.
G protein alpha subunits mediate activation of signaling pathways through G protein-coupled receptors (GPCR) by virtue of GTP-dependent conformational rearrangements. It is known that regions of disorder in crystal structures can be indicative of conformational flexibility within a molecule, and there are several such regions in G protein alpha subunits. The amino-terminal 29 residues of Galpha are alpha-helical only in the heterotrimer, where they contact the side of Gbeta, but little is known about the conformation of this region in the active GTP bound state. To address the role of the Galpha amino-terminus in G-protein activation and to investigate whether this region undergoes activation-dependent conformational changes, a site-directed cysteine mutagenesis study was carried out. Engineered Galpha(i1) proteins were created by first removing six native reactive cysteines to yield a mutant Galpha(i1)-C3S-C66A-C214S-C305S-C325A-C351I that no longer reacts with cysteine-directed labels. Several cysteine substitutions along the amino-terminal region were then introduced. All mutant proteins were shown to be folded properly and functional. An environmentally sensitive probe, Lucifer yellow, linked to these sites showed a fluorescence change upon interaction with Gbetagamma and with activation by AlF(4)(-). Other fluorescent probes of varying charge, size, and hydrophobicity linked to amino-terminal residues also revealed changes upon activation with bulkier probes reporting larger changes. Site-directed spin-labeling studies showed that the N-terminus of the Galpha subunit is dynamically disordered in the GDP bound state, but adopts a structure consistent with an alpha-helix upon interaction with Gbetagamma. Interaction of the resulting spin-labeled Galphabetagamma with photoactivated rhodopsin, followed by rhodopsin-catalyzed GTPgammaS binding, caused the amino-terminal domain of Galpha to revert to a dynamically disordered state similar to that of the GDP-bound form. Together these results suggest conformational changes occur in the amino-termini of Galpha(i) proteins upon subunit dissociation and upon activating conformational changes. These solution studies reveal insights into conformational changes that occur dynamically in solution.  相似文献   

18.
New metalloprotein structures continue to provide discoveries regarding protein-metal ion partnerships. Many recent structures reveal metal ion sites that control or are controlled by protein conformational change, including modulation by alternative splice variants and striking conformational changes. Only a few novel catalytic metal centers have been revealed recently, such as the surprising Ni-hook superoxide dismutase catalytic site and the cubane-like Mn(3)CaO(4) photosynthetic oxygen-evolving center. However, important new variations on old heme themes, breakthroughs in the fields of metal ion regulation and metallochaperones, and captivating insights into partnerships between proteins and minerals have also been described. Very high resolution metal site structures and metalloprotein design will be increasingly important in order to leverage the wealth of native metalloprotein structures into a deep understanding of metal ion site specificity and activity.  相似文献   

19.
In order to gain direct evidence for lipid-dependent protein conformation in membrane, effects of modification of lipid composition on mobility of spin-labeled cysteine residues were investigated in the plasma membrane of the yeast Saccharomyces cerevisiae. Conversion of the bulk of phospholipids to diglycerides by treatment of the membrane with phospholipase C substantially enhanced spectral anisotropy. However, alteration of the viscosity of the lipid-bilayer by enriching the membrane with palmitelaidic or oleic acid had no effect on mobility of spin-labeled cysteine residues. These observations indicate that while the spin-labeled residues are not in direct contact with the lipid core of the membrane, there are lipid-protein interactions to the extent that removal of polar portion of the bulk of phospholipids induces conformational changes in proteins, which in turn restrict mobility of these residues. It is concluded that conformation of membrane proteins depends on lipid structure and that phospholipids have a role in preserving the native conformation of proteins.  相似文献   

20.
Kersten MV  Dunn SD  Wise JG  Vogel PD 《Biochemistry》2000,39(13):3856-3860
Electron spin resonance (ESR) spectroscopy using site-specific cysteine spin-labeling of the catalytic nucleotide binding sites of F(1)-ATPase was employed to investigate conformational changes within the nucleotide binding sites of the enzyme. Mutant Escherichia coli F(1) that had been modified at position beta-Y331C with a spin label showed almost normal catalytic activity and enabled us to study the effects of binding of different nucleotides and of the F(o) subunit b on the conformation of the catalytic binding sites. The ESR spectra of the spin-labeled, nucleotide-depleted F(1) indicate asymmetry within the sites as is expected from the structural models of the enzyme. Nucleotide binding to the enzyme clearly affects the conformation of the sites; the most pronounced feature upon nucleotide binding is the formation of catalytic site(s) in a very open conformation. Using the same beta-331 spin-labeled F(1) and a truncated form of F(o) subunit b, b(24)(-)(156), we found that binding of b(24)(-)(156) to spin-labeled F(1) significantly changes the conformation of the catalytic sites. In this paper we present data that for the first time directly show that a conformational binding change takes place upon binding of nucleotides to the nucleotide binding sites and that also show that binding of b(24)(-)(156) strongly affects the conformation of the catalytic sites, most likely by increasing the population of binding sites that are in the open conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号