首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electroacupuncture (EA) has demonstrated therapeutic potential for the treatment of Alzheimer's disease (AD). A previous study reported that N-myc downstream-regulated gene 2 (NDRG2) was upregulated in the brain of patients with AD. In the present study, we investigated the effects of repeated EA administration on reference memory impairment and the role of NDRG2 in an amyloid precursor protein (APP)/presenilin-1 (PS1) double transgenic mouse model. Age-matched wild-type and transgenic mice were treated with EA (once per day for 30 min) for 4 weeks (four courses of 5 days EA administration and 2 days rest) beginning at 10 months of age. At seven and ten postnatal months of age and following a 4-week EA treatment regime, mice received training in the Morris water maze (MWM) and a probe test. Brain tissue was analyzed via Western blot and double-label immunofluorescence. Beginning at 7 months of age, APP/PS1 mice began to exhibit deficits in reference memory in the MWM test, an impairment associated with upregulation of glial fibrillary acidic protein (GFAP) and NDRG2. Four weeks of EA administration significantly ameliorated cognitive impairments and suppressed GFAP and NDRG2 upregulation. In conclusion, our findings demonstrated that EA administration can alleviate reference memory deficits and suppress NDRG2 upregulation in an AD transgenic mouse model. This study provides supportive evidence for EA as an effective therapeutic intervention for AD, as well as NDRG2 as a novel target for AD treatment.  相似文献   

2.
探讨游泳运动对APP/PS1转基因小鼠学习记忆能力的影响。选择11月龄的雄性APP/PS1转基因小鼠,随机平均分为对照组和游泳组,对照组常规饲养而游泳组进行1个月的游泳运动训练。分别采用刚果红染色、Tunel检测、Western Blot和Morris水迷宫等实验方法观察小鼠大脑皮层Aβ斑形成、神经元凋亡、线粒体生成相关蛋白表达和学习记忆能力的变化情况。结果发现,游泳运动可以减少APP/PS1转基因小鼠大脑皮层Aβ斑的形成、抑制神经元凋亡、促进线粒体生成、增强小鼠的学习记忆能力。由此可见,游泳运动可作为一项防治阿尔茨海默病的行为治疗候选方案。  相似文献   

3.
4.
It is reported that chitinase1 increases in Alzheimer’s disease (AD). However, the alteration of chitinase1 in the progress of AD is still unclear. Thus, we designed the present study to detect chitinase1 level in different stages of APP/PS1 double transgenic mice. Experimental models were APP/PS1 double transgenic mice with 4, 12 and 22 months. Cognitive function was detected by Morris water maze test in APP/PS1 mice as well as controls. ELISA and the quantitative RT-PCR were used to detect chitinase1 level in different groups. The study displayed that expression of chitinase1 gradually increased in a time-dependent manner in APP/PS1 mice, while there were no statistical differences among the wild-type mice in varies ages. Moreover, chitnase1 increased significantly in APP/PS1 mice aged 12 and 22 months compared with the age matched wild-type group, respectively. However, no difference of chitnase1 was found between 4 months-old APP/PS1 mice and wild-type mice. Comparing with the age matched wild type group, the consequences of mRNA on the increase in chitnase1 is in accordance with protein in APP/PS1 mice. Furthermore, Morris water maze showed that 4 months-old APP/PS1 mice have normal spatial learning and impaired spatial memory; both spatial learning and spatial memory in 12 and 22 months-old APP/PS1 mice were declined. Time-dependent increase of chitnase1 in APP/PS1 double transgenic mice indicates that the level of chitinase1 is associated with decline of cognition. Therefore, chitinase1 might be a biomarker of disease progression in AD.  相似文献   

5.
藏药七十味珍珠丸(ratanasampil,RNSP)可改善大脑氧化应激水平,改善大脑功能,有安神和促进学习记忆的功效,然而RNSP是否可改善阿尔茨海默症(AD)小鼠的学习记忆功能,尚缺乏系统研究。本研究采用APP/PS 1转基因小鼠为研究对象,并随机将其分为实验组和对照组。对实验组进行为期12周的RNSP灌胃给药,对照组进行12周的蒸馏水灌胃,采用Morris水迷宫与开场实验评价小鼠学习记忆能力,比较小鼠体重与相关器官质量,并比较器官质量指数,通过分子生物学检测指标评价小鼠脑内老年斑数量,Aβ生成量及BACE1表达水平。本研究证实,与对照组相比,给药组小鼠定位航行潜伏期明显缩短(22.60±13.26 vs. 46.44±8.41, P<0.01, day 5),穿越平台次数明显增加(1.29±0.37 vs. 0.54±0.29, P<0.01),探洞次数明显增加(32.11±9.85 vs. 20.89±8.78, P<0.05),表明RNSP提高了APP/PS 1小鼠的学习记忆能力和空间探索能力。与对照组相比,给药组小鼠大脑重量及脑质量指数均增高(0.4135±0.0102 vs. 0.3833±0.0254, P<0.05;2.04±0.08 vs. 1.84±0.15, P<0.05),脑内老年斑数量减少(18.70±7.88 vs. 38.83±6.15, P<0.05),Aβ1- 42水平及BACE1表达均显著降低(0.19±0.08 vs. 0.41±0.12, P<0.05; 0.136±0.04 vs. 0.206±0.02, P<0.05),表明RNSP延缓了APP/PS 1小鼠的脑萎缩进程,降低脑内老年斑的形成,下调脑内Aβ1-42水平和BACE1裂解酶的蛋白质表达量。本研究提示,RNSP可改善APP/PS 1小鼠的学习记忆能力,其机制可能和RNSP抑制脑萎缩,降低BACE1蛋白表达以及减少脑内Aβ沉积有关。  相似文献   

6.
目的:采用非靶向的高通量尿液代谢组学技术对钩藤散改善淀粉样前体蛋白/早老素蛋白1基因,即APP/PS1双转基因小鼠的作用机制进行研究。方法:5月龄APP/PSI小鼠采用Morris水迷宫实验检测双转基因小鼠的空间学习能力,在确定出现空间记忆能力功能损伤地条件下采用基于非靶向的尿液代谢组学技术研究APP/PSI小鼠的代谢网络,聚焦关键通路,同时观察钩藤散在水迷宫和代谢水平上的治疗作用。结果:Morris水迷宫对比发现APP/PSI小鼠的空间记忆能力明显长于同窝野生小鼠,给予钩藤散后呈现一定程度的回调趋势,经非靶向的代谢轮廓分析和核心代谢通路聚焦后,成功发现正常小鼠(同窝野生小鼠)和APP/PSI双转基因小鼠代谢轮廓间差异最大的信号,经质谱解析和权威数据库检索后鉴定6个与学习记忆相关的潜在生物标记物,分别是牛磺酸(taurine)、叶酸(pteroylglutamic acid)、新蝶呤(neopterin)、磺乙谷酰胺(glutaurine)、戊邻酮二酸盐(2-oxoglutarate)、二氢新蝶呤(dihydroneopterin),他们主要涉及牛磺酸代谢及叶酸代谢等,经钩藤散治疗后能有效回调。结论:钩藤散对APP/PSI双转基因小鼠的学习记忆能力具有一定治疗作用,本次发现的6个生物标记物可能是APP/PSI双转基因小鼠发病的潜在靶点,为钩藤散的相关药效学研究提供实验依据。  相似文献   

7.
线粒体融合分裂平衡是线粒体动力学的需要。本研究观察12周规律有氧运动对APP/PS1双转基因小鼠中枢神经元线粒体融合分裂动态平衡的影响。本研究采用3月龄雄性APP/PS1小鼠(AD模型)随机分为AD安静组(AS)、AD运动组(AE),同月龄雄性C57BL/6J小鼠做正常对照组(CS)。AE组进行12周规律跑台运动,5 d/周,60 min/d。前10 min运动速度12 m/min,后50 min运动速度15 m/min,跑台坡度为0°。八臂迷宫实验检测小鼠工作记忆错误频率和参考记忆错误频率;Western印迹检测小鼠皮层、海马组织中线粒体分裂蛋白Drp1和Fis1的含量,以及Drp1的活性(p-Drp1-Ser616)、线粒体融合蛋白Mfn1、Mfn2、Opa1的表达水平;透射电镜观察皮层、海马线粒体形态结构、健康线粒体比率及线粒体平均直径。本研究证实AS组较CS组工作记忆错误频率显著提高(P<0.05),12周有氧运动显著降低工作记忆错误频率(P<0.05)。AS组小鼠皮层Fis1蛋白和海马脑区Drp1、Fis1蛋白表达水平及皮层、海马脑区Drp1蛋白的活性增加(P<0.05)。而皮层Mfn1和海马Mfn1、Mfn2蛋白表达水平显著降低(P<0.05)。12周有氧运动显著减低Fis1、Drp1蛋白表达及Drp1蛋白的活性,提高Mfn1、Mfn2蛋白表达水平(P<0.05)。AS组小鼠皮层、海马线粒体多呈现球形,部分线粒体膜结构消失,线粒体嵴结构紊乱。且AS组较CS组小鼠健康线粒体比率降低、直径缩短。12周规律有氧运动可明显改善线粒体形态和结构,提高健康线粒体比率及直径。本研究提示,12周规律有氧运动可有效抑制皮层、海马脑区线粒体分裂蛋白Drp1和 Fis1的表达,降低Drp1的活性(p-Drp1-Ser616),上调线粒体融合蛋白Mfn1、Mfn2的蛋白表达水平,改善线粒体形态和结构以促进线粒体质量控制,是有氧运动改善AD模型空间学习记忆能力的分子机制之一。  相似文献   

8.
9.
Enriched environment exposure improves several aspects of cognitive performance in Alzheimer’s disease patients and in animal models and, although the role of amyloid plaques is questionable, several studies also assessed their response to enriched environment, with contrasting results. Here we report that rearing APPSwe/PS1L166P mice in an enriched environment since birth rescued the spatial memory impairment otherwise present at 6 months of age. At the same time, the exposure to the enriched environment caused a transient acceleration of plaque formation, while there was no effect on intracellular staining with the 6E10 antibody, which recognizes β-amyloid, full length amyloid precursor protein and its C-terminal fragments. The anticipation of plaque formation required exposure during early development, suggesting an action within critical periods for circuits formation. On the other hand, chronic neuronal activity suppression by tetrodotoxin decreased the number of plaques without affecting intracellular amyloid. These results indicate that enriched environment exposure since early life has a protective effect on cognitive deterioration although transiently accelerates amyloid deposition. In addition, the effects of the enriched environment might be due to increased neuronal activity, because plaques were reduced by suppression of electrical signaling by tetrodotoxin.  相似文献   

10.
目的通过动态检测小鼠尿液中AD7C-NTP的浓度变化,了解姜黄素在阿尔茨海默病治疗方面的作用。方法 3月龄APP/PS1双转基因小鼠35只,随机分为5组,每组7只,分别为模型组,阳性对照组(罗格列酮组),姜黄素大、中、小剂量组;另选用同月龄同背景的C57BL/6J小鼠7只作为正常对照组。以上6组连续灌胃3个月,分别于灌胃前、灌胃30d、灌胃60d和灌胃90d收集小鼠尿液,应用酶联免疫吸附试验(ELISA)检测尿AD7C-NTP浓度的变化。结果不同时间点各组小鼠尿AD7C-NTP浓度的动态存在波动,各治疗组治疗2个月与治疗1个月相比,AD7C-NTP浓度均有所下降(P0.05,P0.01);同一时间点小鼠尿AD7C-NTP浓度组间比较:治疗2个月后,西药组,姜黄素大、小剂量组与模型组相比AD7C-NTP浓度有所下降(P0.05,P0.01)。结论姜黄素可降低AD模型小鼠尿液内AD7C-NTP浓度,延缓AD的进展。  相似文献   

11.
为研究跑台运动对APP/PS1小鼠海马线粒体融合、分裂作用的影响,将遗传背景为C57BL/6的3月龄APP/PS1小鼠和野生小鼠各42只分别随机分为APP/PS1安静对照组(ADC,n=21)和运动组(ADE,n=21),野生安静对照组(WTC,n=21)和运动组(WTE,n=21)。ADE、WTE组进行12周跑台运动,同时ADC、WTC组置于安静跑台环境。水迷宫实验检测小鼠的空间学习记忆能力,RT-PCR法检测线粒体功能关键酶的mRNA水平,Western印迹检测海马融合、分裂及线粒体关键酶的蛋白质表达情况,透射电镜观察海马线粒体融合、分裂状态。结果发现,6月龄APP/PS1小鼠学习记忆能力降低(P<0.05);海马线粒体融合蛋白质Mfn1、Mfn2、Opa1表达降低(P<0.05),线粒体分裂蛋白质Drp1、Mff表达增高(P<0.05);线粒体膜结构模糊,嵴不明显,线粒体碎片增多,空泡化线粒体增多;线粒体呼吸关键酶COX IV及ATP合酶表达均下调(P<0.05)。12周跑台运动可逆转APP/PS1小鼠的上述变化,改善海马线粒体结构和功能,提高学习记忆能力。综上提示:12周跑台运动改善APP/PS1小鼠学习记忆能力的机制可能与其对线粒体结构与功能的改善有关。  相似文献   

12.
13.
Alzheimer’s disease (AD) is characterized by the deposition of beta-amyloid protein (Aβ) and extensive neuronal cell death. Apoptosis plays a crucial role in loss of neurons in AD. Neuregulin1 (NRG1) has been found to protect neurons from oxygen glucose deprivation induced apoptosis and hypoxia ischemia induced apoptosis. However, the relationship between NRG1 and apoptosis related protein expression in AD and its mechanism remain uncertain. The present study explores the effects of NRG1 on Aβ-induced apoptosis in AD. In this study, extracellular domain of NRG1beta1 (NRG1β1-ECD) promoted the expression of p-ErbB4 receptor, p-Akt and increased the level of Bcl-2 both in APP/PS1 transgenic mice and in vitro. In primary culture of neurons, the level of Bcl-2 protein decreased significantly after Aβ treatment. These changes were inhibited by pretreatment of neurons with NRG1β1-ECD. A specific inhibitor of PI3-kinase/Akt pathway, wortmannin, significantly abrogated the effects of NRG1β1-ECD on p-Akt and Bcl-2 levels. Furthermore, the expression of PI3-kinase/Akt by NRG1β1-ECD was ErbB4-dependent. Our data demonstrated that NRG1β1-ECD might serve as an obvious neuroprotection in AD, and the possible protective mechanism occurs most likely via ErbB4-dependent activation of PI3-kinase/Akt pathway.  相似文献   

14.
目的:明确经典阿尔兹海默症(Alzheimer's Disease,AD)小鼠模型APP/PS1的年轻小鼠是否存在学习记忆障碍,并探讨尾静脉注射同龄小鼠的血清是否可以改善年老AD小鼠的认知能力。方法:根据转基因小鼠的基因型,将同龄小鼠分为wildtype(WT)和APP/PS1两组,首先用物体辨别实验(Novel object recognition,NOR)检测2个月龄小鼠的认知能力(90min retention:WT n=6,APP/PS1 n=8; 24hours retention:WT n=7, APP/PS1=8),同时用Morris水迷宫实验(Morris water maze,MWM)检测2个月龄小鼠的空间学习记忆能力(WT n=6, APP/PS1 n=5);采用内眦取血法从8月龄小鼠中获取全血,高速离心获得血清。将8月龄APP/PS1小鼠分为两组:对照组注射PBS(n=7),实验组注射血清(n=6),每周注射两次,100μL/只/次,连续注射3周。注射结束后,用NOR法检测对照组和实验组小鼠的认知能力。结果:NOR实验结果显示APP/PS1小鼠的辨别指数(Discrimination index(%))显著低于WT小鼠(P0.05);MWM实验结果显示APP/PS1小鼠到达平台的时间明显长于WT小鼠,同时在测试阶段中,APP/PS1小鼠在目的象限的探索时间及穿越次数显著低于WT小鼠(P0.05);治疗实验中,与对照组APP/PS1小鼠的辨别指数相比较,实验组APP/PS1小鼠在注射同龄小鼠的血清后,其物体辨别指数显著升高(P0.05),小鼠脑中的Aβ沉淀明显减少。结论:APP/PS1小鼠在2个月左右就会表现出明显的学习记忆障碍;注射正常同龄鼠的血清可以明显改善APP/PS1小鼠的学习记忆能力同时阻碍Aβ沉淀的形成。  相似文献   

15.
Zhao  Feng-li  Qiao  Pei-feng  Yan  Ning  Gao  Dan  Liu  Meng-jie  Yan  Yong 《Neurochemical research》2016,41(5):1145-1159

Hydrogen sulfide (H2S) is now considered to be a gasotransmitter and may be involved in the pathological process of Alzheimer’s disease (AD). A majority of APP is associated with mitochondria and is a substrate for the mitochondrial γ-secretase. The mitochondria-associated APP metabolism where APP intracellular domains (AICD) and Aβ are generated locally and may contribute to mitochondrial dysfunction in AD. Here, we aimed to investigate the ability of H2S to mediate APP processing in mitochondria and assessed the possible mechanisms underlying H2S-mediated AD development. We treated neurons from APP/PS1 transgenic mice with a range of sodium hydrosulfide (NaHS) concentrations. NaHS attenuated APP processing and decreased Aβ production in mitochondria. Meanwhile, NaHS did not changed BACE-1 and ADAM10 (a disintegrin and metalloprotease 10) protein levels, but NaHS (30 μM) significantly increased the levels of presenilin 1(PS1), PEN-2, and NCT, as well as improved the γ-secretase activity, while NaHS (50 μM) exhibits the opposing effects. Furthermore, the intracellular ATP and the COX IV activity of APP/PS1 neurons were increased after 30 μM NaHS treatment, while the ROS level was decreased and the MMP was stabilized. The effect of NaHS differs from DAPT (a non-selective γ-secretase inhibitor), and it selectively inhibited γ-secretase in vitro, without interacting with Notch and modulating its cleavage. The results indicated that NaHS decreases Aβ accumulation in mitochondria by selectively inhibiting γ-secretase. Thus, we provide a mechanistic view of NaHS is a potential anti-AD drug candidate and it may decrease Aβ deposition in mitochondria by selectively inhibiting γ-secretase activity and therefore protecting the mitochondrial function during AD conditions.

  相似文献   

16.
The accumulation of β-amyloid peptides in the brain has been recognized as an essential factor in Alzheimer’s disease pathology. Several proteases, including Neprilysin (NEP), endothelin converting enzyme (ECE), and insulin degrading enzyme (IDE), have been shown to cleave β-amyloid peptides (Aβ). We have previously reported reductions in amyloid in APP+PS1 mice with increased expression of ECE. In this study we compared the vector-induced increased expression of NEP and IDE. We used recombinant adeno-associated viral vectors expressing either native forms of NEP (NEP-n) or IDE (IDE-n), or engineered secreted forms of NEP (NEP-s) or IDE (IDE-s). In a six-week study, immunohistochemistry staining for total Aβ was significantly decreased in animals receiving the NEP-n and NEP-s but not for IDE-n or IDE-s in either the hippocampus or cortex. Congo red staining followed a similar trend revealing significant decreases in the hippocampus and the cortex for NEP-n and NEP-s treatment groups. Our results indicate that while rAAV-IDE does not have the same therapeutic potential as rAAV-NEP, rAAV-NEP-s and NEP-n are effective at reducing amyloid loads, and both of these vectors continue to have significant effects nine months post-injection. As such, they may be considered reasonable candidates for gene therapy trials in AD.  相似文献   

17.
Administration of morphine may impair learning and memory processes. Cholecystokinin has been reported to be involved in various types of memory, and our previous study found that Cholecystokinin octapeptide attenuates spatial memory impairment in chronic morphine-treated mice. However, the effect of CCK-8 on acute morphine-induced memory impairment is not clear. In this study, effect of acute CCK-8 and morphine on spatial reference memory was evaluated using Morris water maze in KM mice. Acetylcholine (Ach) content was measured using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC–MS/MS). Pre-training with morphine (5, 10 mg/kg, i.p.) significantly impaired spatial reference memory acquisition without disturbing the performance in the visible platform task, while pre-test morphine has no effect on memory retrieval. Pre-training (0.01, 0.1 and 1 μg, i.c.v.) or pre-test (0.1 and 1 μg, i.c.v.) of CCK-8 facilitated spatial reference memory acquisition and retrieval, respectively. CCK-8 (0.1 and 1 μg) significantly attenuated memory loss by pre-training morphine. Furthermore, CCK-8 (1 μg, i.c.v) increased acetylcholine contents of hippocampus in saline or morphine-treated mice. Our study identifies CCK-8 reversed spatial reference memory loss induced by acute morphine, and the mnemonic effect could be related to the facilitation of CCK-8 on memory acquisition and retrieval through accelerating acetylcholine release in hippocampus.  相似文献   

18.
Postoperative cognitive dysfunction (POCD) is a clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery, especially in geriatric surgical patients. Although it has been documented that isoflurane exposure impaired cognitive function in several aged animal models, there are few clinical interventions and treatments available to prevent this disorder. Minocycline has been well established to exert neuroprotective effects in various experimental animal models and neurodegenerative diseases. Therefore, we hypothesized that pretreatment with minocycline attenuates isoflurane-induced cognitive decline in aged rats. In the present study, twenty-month-old rats were administered minocycline or an equal volume of saline by intraperitoneal injection 12 h before exposure to isoflurane. Then the rats were exposed to 1.3% isoflurane for 4 h. Two weeks later, spatial learning and memory of the rats were examined using the Morris Water Maze. We found that pretreatment with minocycline mitigated isoflurane-induced cognitive deficits and suppressed the isoflurane-induced excessive release of IL-1β and caspase-3 in the hippocampal CA1 region at 4 h after isoflurane exposure, as well as the number of TUNEL-positive nuclei. In addition, minocycline treatment also prevented the changes of synaptic ultrastructure in the hippocampal CA1 region induced by isoflurane. In conclusion, pretreatment with minocycline attenuated isoflurane-induced cognitive impairment in aged rats.  相似文献   

19.
20.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive impairment and synaptic dysfunction. Adenosine is an important homeostatic modulator that controls the bioenergetic network in the brain through regulating receptor-evoked signaling pathways, bioenergetic machineries, and epigenetic-mediated gene regulation. Equilibrative nucleoside transporter 1 (ENT1) is a major adenosine transporter that recycles adenosine from the extracellular space. In the present study, we report that a small adenosine analogue (designated J4) that inhibited ENT1 prevented the decline in spatial memory in an AD mouse model (APP/PS1). Electrophysiological and biochemical analyses further demonstrated that chronic treatment with J4 normalized the impaired basal synaptic transmission and long-term potentiation (LTP) at Schaffer collateral synapses as well as the aberrant expression of synaptic proteins (e.g., NR2A and NR2B), abnormal neuronal plasticity-related signaling pathways (e.g., PKA and GSK3β), and detrimental elevation in astrocytic A2AR expression in the hippocampus and cortex of APP/PS1 mice. In conclusion, our findings suggest that modulation of adenosine homeostasis by J4 is beneficial in a mouse model of AD. Our study provides a potential therapeutic strategy to delay the progression of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号