首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several species of the genus Oligoryzomys are natural hosts of different hantavirus genotypes affecting humans. The systematics of the genus is confusing, which complicates the identification of the rodent host and hence the potential endemic areas of hantavirus pulmonary syndrome. In this study, we analyse molecular data to infer phylogenetic relationships among Central and South American specimens of Oligoryzomys, and compare our results with previously published data on karyotypic, geographic distribution and host–virus associations to solve contradictory taxonomic reports. We identified 25 clades, each one corresponding to a different putative species. The phylogenetic trees show that Oligoryzomys longicaudatus is strongly related to the Oligoryzomys flavescens complex, which comprises four clades; Oligoryzomys nigripes is related to Oligoryzomys stramineus, Oligoryzomys vegetus is related to Oligoryzomys fulvescens from Central America, and Oligoryzomys brendae is the sister species of Oligoryzomys aff. destructor. We identified the following rodent host–hantavirus genotype relationships: O. longicaudatus–Andes; O. flavescens ‘West'–Bermejo; O. flavescens ‘East'–Lechiguanas; O. nigripes–Juquitiba; Oligoryzomys microtis–Rio Mamore and Rio Mamore‐3; Oligoryzomys chacoensis–Oran; Oligoryzomys costaricencis–Choclo; Oligoryzomys delicatus–Maporal; Oligoryzomys utiaritensis–Castelo dos Sonhos; Oligoryzomys sp. RT2012–Rio Mamore‐4; Oligoryzomys sp. (and not Oligoryzomys fornesi)–Anajatuba. This work, besides contributing to the development of prevention programmes for hantavirus epidemiology in Latin America, represents a comprehensive update of the systematics of the genus Oligoryzomys. © 2014 The Linnean Society of London  相似文献   

2.
Nucleotide sequences were determined for the complete S genome segments of the six distinct hantavirus genotypes from Argentina and for two cell culture-isolated Andes virus strains from Chile. Phylogenetic analysis indicates that, although divergent from each other, all Argentinian hantavirus genotypes group together and form a novel phylogenetic clade with the Andes virus. The previously characterized South American hantaviruses Laguna Negra virus and Rio Mamore virus make up another clade that originates from the same ancestral node as the Argentinian/Chilean viruses. Within the clade of Argentinian/Chilean viruses, three subclades can be defined, although the branching order is somewhat obscure. These are made of (i) "Lechiguanas-like" virus genotypes, (ii) Maciel virus and Pergamino virus genotypes, and (iii) strains of the Andes virus. Two hantavirus genotypes from Brazil, Araraquara and Castello dos Sonhos, were found to group with Maciel virus and Andes virus, respectively. The nucleocapsid protein amino acid sequence variability among the members of the Argentinian/Chilean clade does not exceed 5.8%. It is especially low (3.5%) among oryzomyine species-associated virus genotypes, suggesting recent divergence from the common ancestor. Interestingly, the Maciel and Pergamino viruses fit well with the rest of the clade although their hosts are akodontine rodents. Taken together, these data suggest that under conditions in which potential hosts display a high level of genetic diversity and are sympatric, host switching may play a prominent role in establishing hantavirus genetic diversity. However, cospeciation still remains the dominant factor in the evolution of hantaviruses.  相似文献   

3.
Nucleotide sequences were determined for the complete M genome segments of two distinct hantavirus genetic lineages which were detected in hantavirus antibody- and PCR-positive white-footed mice (Peromyscus leucopus) from Indiana and Oklahoma. Phylogenetic analyses indicated that although divergent from each other, the virus lineages in Indiana and Oklahoma were monophyletic and formed a newly identified unique ancestral branch within the clade of Sin Nombre-like viruses found in Peromyscus mice. Interestingly, P. leucopus-borne New York virus was found to be most closely related to the P. maniculatus-borne viruses, Sin Nombre and Monongahela, and monophyletic with Monongahela virus. In parallel, intraspecific phylogenetic relationships of P. leucopus were also determined, based on the amplification, sequencing, and analysis of the DNA fragment representing the replication control region of the rodent mitochondrial genome. P. leucopus mitochondrial DNA haplotypes were found to form four separate genetic clades, referred to here as Eastern, Central, Northwestern, and Southwestern groups. The distinct Indiana and Oklahoma virus lineages were detected in P. leucopus of the Eastern and Southwestern mitochondrial DNA haplotypes, respectively. Taken together, our current data suggests that both cospeciation of Peromyscus-borne hantaviruses with their specific rodent hosts and biogeographic factors (such as allopatric migrations, geographic separation, and isolation) have played important roles in establishment of the current genetic diversity and geographic distribution of Sin Nombre-like hantaviruses. In particular, the unusual position of New York virus on the virus phylogenetic tree is most consistent with an historically recent host-switching event.  相似文献   

4.
We tested sera from 286 agricultural workers and 322 rodents in the department of Córdoba, northeastern Colombia, for antibodies against two hantaviruses. The sera were analysed by indirect ELISA using the lysate of Vero E6 cells infected with Maciel virus (MACV) or the N protein of Araraquara virus (ARAV) as antigens for the detection of antibodies against hantaviruses. Twenty-four human sera were IgG positive using one or both antigens. We detected anti-MACV IgG antibodies in 10 sera (3.5%) and anti-ARAV antibodies in 21 sera (7.34%). Of the 10 samples that were positive for MACV, seven (70%) were cross-reactive with ARAV; seven of the 21 ARAV-positive samples were cross-reactive with MACV. Using an ARAV IgM ELISA, two of the 24 human sera (8.4%) were positive. We captured 322 rodents, including 210 Cricetidae (181 Zygodontomys brevicauda, 28 Oligoryzomys fulvescens and 1 Oecomys trinitatis), six Heteromys anomalus (Heteromyidae), one Proechimys sp. (Echimyidae) and 105 Muridae (34 Rattus rattus and 71 Mus musculus). All rodent sera were negative for both antigens. The 8.4% detection rate of hantavirus antibodies in humans is much higher than previously found in serosurveys in North America, suggesting that rural agricultural workers in northeastern Colombia are frequently exposed to hantaviruses. Our results also indicate that tests conducted with South American hantavirus antigens could have predictive value and could represent a useful alternative for the diagnosis of hantavirus infection in Colombia.  相似文献   

5.
The recent discovery of hantaviruses in shrews and bats in West Africa suggests that other genetically distinct hantaviruses exist in East Africa. Genetic and phylogenetic analyses of newfound hantaviruses, detected in archival tissues from the Geata mouse shrew (Myosorex geata) and Kilimanjaro mouse shrew ( Myosorex zinki) captured in Tanzania, expands the host diversity and geographic distribution of hantaviruses and suggests that ancestral shrews and/or bats may have served as the original mammalian hosts of primordial hantaviruses.  相似文献   

6.

Background

The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary.

Methodology/Principal Findings

Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54–65% and 46–63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses.

Conclusions

Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts.  相似文献   

7.
Diverse species of rodents and shrews, which are abundant worldwide, harbor a variety of viruses;some of these are closely related to human viruses and possess zoonotic potential. Previously studies have demonstrated that the mammarenavirus and hantavirus carried by rodents or shrews could cause diseases in human population. To determine the distribution of zoonotic viruses in Shenzhen city, the major city in southern China with a high population density, we analyzed 225 rodents(Rattus norvegicus and Rattus flavipectus) and 196 shrews(Suncus murinus) from urban and rural districts for the presence of mammarenavirus, hantavirus, and hepatitis E virus(HEV) by RT-PCR targeting the conserved regions. The infection rates for mammarenavirus, hantaviruses,and HEV in rodents and shrews were 3.56%, 6.89%, and 1.66%, respectively. Partial genome fragment analysis indicated that mammarenavirus and hantavirus strains had more than 90% and 99% nucleic acid identity with Cardamones virus and Seoul virus, respectively, which cause diseases in humans. Although the present HEV strains identified are typically found worldwide,phylogenetic analysis demonstrated a divergence of 16%. To our knowledge, the present work is the first report of the prevalence of mammarenavirus, hantaviruses, and rat HEV strains in rodents and shrews from Shenzhen city, China. Our findings highlight the zoonotic potential of rodent-and shrew-borne mammarenavirus and hantavirus, and the biodiversity of rat HEV isolates in Shenzhen city. The present work suggests that utilization of good hygiene habits is important to minimize the risk of zoonosis.  相似文献   

8.
9.
Thirteen hantavirus genotypes, associated with at least 12 sigmodontine reservoir rodents, have been recognized in the four countries that represent the Southern Cone of South America. Host-virus relationships are not as well defined as in North America; several Southern Cone hantaviruses appear to share a common host and some viruses do not occur throughout the range of their host. Although hantavirus-host relationships in the Southern Cone are less strictly concordant with the single-host-single-virus pattern reported elsewhere, recent studies suggest that much of the ambiguity may result from an incomplete understanding of host and hantavirus systematics. Although some Southern Cone host species are habitat generalists, some sympatric species are habitat specialists, helping to explain how some strict host-virus pairings may be maintained. In some cases, host population densities were higher in peridomestic habitats and prevalence of hantavirus infection was higher in host populations in peridomestic habitats. Seasonal and multiyear patterns in climate and human disturbance affect host population densities, prevalence of infection, and disease risk to humans. Unusually high hantavirus antibody prevalence in indigenous human populations may be associated with frequent and close contact with host rodents. Ongoing studies are improving our understanding of hantavirus-host ecology and providing tools that may predict human risk.  相似文献   

10.
Dengue virus (DENV) is the most widespread arthropod-borne virus, and the number and severity of outbreaks has increased worldwide in recent decades. Dengue is caused by DENV-1, DENV- 2, DENV-3 and DENV-4 which are genetically distant. The species has been subdivided into genotypes based on phylogenetic studies. DENV-2, which was isolated from dengue fever patients during an outbreak in Piaui, Brazil in 2006/2007 was analyzed by sequencing the envelope (E) gene. The results indicated a high similarity among the isolated viruses, as well as to other DENV-2 from Brazil, Central America and South America. A phylogenetic and phylogeographic analysis based on DENV-2E gene sequences revealed that these viruses are grouped together with viruses of the American-Asian genotype in two distinct lineages. Our results demonstrate the co-circulation of two American-Asian genotype lineages in northeast Brazil. Moreover, we reveal that DENV-2 lineage 2 was detected in Piauí before it disseminated to other Brazilian states and South American countries, indicating the existence of a new dissemination route that has not been previously described.  相似文献   

11.
12.
Discovery of genetically distinct hantaviruses in multiple species of shrews (order Soricomorpha, family Soricidae) and moles (family Talpidae) contests the conventional view that rodents (order Rodentia, families Muridae and Cricetidae) are the principal reservoir hosts and suggests that the evolutionary history of hantaviruses is far more complex than previously hypothesized. We now report on Rockport virus (RKPV), a hantavirus identified in archival tissues of the eastern mole (Scalopus aquaticus) collected in Rockport, TX, in 1986. Pairwise comparison of the full-length S, M, and L genomic segments indicated moderately low sequence similarity between RKPV and other soricomorph-borne hantaviruses. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that RKPV shared a most recent common ancestor with cricetid-rodent-borne hantaviruses. Distributed widely across the eastern United States, the fossorial eastern mole is sympatric and syntopic with cricetid rodents known to harbor hantaviruses, raising the possibility of host-switching events in the distant past. Our findings warrant more-detailed investigations on the dynamics of spillover and cross-species transmission of present-day hantaviruses within communities of rodents and moles.  相似文献   

13.
The emerging viral diseases haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) are a cause of global concern as they are increasingly reported from newer regions of the world. The hantavirus species causing HFRS include Hantaan virus, Seoul virus, Puumala virus, and Dobrava-Belgrade virus while Sin Nombre virus was responsible for the 1993 outbreak of HCPS in the Four Corners Region of the US. Humans are accidental hosts and get infected by aerosols generated from contaminated urine, feces and saliva of infected rodents. Rodents are the natural hosts of these viruses and develop persistent infection. Human to human infections are rare and the evolution of the virus depends largely on that of the rodent host. The first hantavirus isolate to be cultured, Thottapalayam virus, is the only indigenous isolate from India, isolated from an insectivore in 1964 in Vellore, South India. Research on hantaviruses in India has been slow but steady since 2005. Serological investigation of patients with pyrexic illness revealed presence of anti-hantavirus IgM antibodies in 14.7% of them. The seropositivity of hantavirus infections in the general population is about 4% and people who live and work in close proximity with rodents have a greater risk of acquiring hantavirus infections. Molecular and serological evidence of hantavirus infections in rodents and man has also been documented in this country. The present review on hantaviruses is to increase awareness of these emerging pathogens and the threats they pose to the public health system.  相似文献   

14.
Hantaviruses are a newly emerging group of rodent-borne viruses that have significant zoonotic potential. Human infection by hantaviruses can result in profound morbidity and mortality, with death rates as high as 50%, and potentially long-term cardiovascular consequences. Hantaviruses are carried by peridomestic and wild rodents worldwide and have occasionally been linked to infections in laboratory rodents. Because these viruses have been associated with significant human disease, they have become the subject of intense scientific investigation. In this review the reader is introduced to the hantaviruses, including hantavirus diseases and their pathogenesis. A review of the biology, morphology, and molecular biology of the hantaviruses with a brief overview of the ecology and biology of hantavirus-rodent pairs is also included. The risks of occupational exposure to hantaviruses, diagnosis of hantavirus infections, and methods for handling potentially infected rodents and tissues are discussed as well.  相似文献   

15.
Subgeneric recognition of rodents of the genus Oligoryzomys from Argentina is specially difficult because morphologic and morphometric criteria to identify species are poorly defined. In order to contribute to the unequivocal identification and geographic distribution of Oligoryzomys species, we studied the restriction fragment length polymorphism (PCR-RFLP) patterns of the D-loop region of the mitochondrial DNA in specimens collected from different regions of Argentina. PCR amplification products of 59 individuals were digested with five restriction enzymes. Patterns obtained were used to produce two phylogenetic consensus trees, one obtained with PAUP and the other with MIX analyses. All specimens from the Patagonia (southern region) clustered together and would correspond to O. longicaudatus. Individuals from the North grouped in four clusters (two of them comprising one individual), supported by high bootstrap values. The one including the 82% of the rodents from the northern region would correspond to the species O. chacoensis.  相似文献   

16.
Five hundred fifty-six samples representing 24 species of small mammals (two species of marsupials and 22 rodents) were collected in Panama between February 2000 and July 2002. The samples were examined for antibodies to hantaviruses by means of enzyme-linked immunosorbent assay or immunoblot assays. The serologic results indicated that several rodent species might act as hantaviral reservoirs in Panama: Costa Rican pygmy rice rat (Oligoryzomys fulvescens costaricensis), four positive of 72 tested (5.6%); Cherrie's cane rat (Zygodontomys brevicauda cherriei), five of 108 (4.6%); Mexican deer mouse (Peromyscus mexicanus), one of 22 (5%); Mexican harvest mouse (Reithrodontomys mexicanus), one of seven (14%); Chiriquí harvest mouse (Reithrodontomys creper), one of two (50%); and Sumichrast's harvest mouse (Reithrodontomys sumichrasti), three of four (75%). Hantavirus infection in Peromyscus mexicanus and the three species of Reithrodontomys was caused by Rio Segundo hantavirus, a species of virus not previously reported from Panama. At least three hantaviruses, therefore, are known to infect populations of wild rodents in the country. However, given the total number of animals tested, the role of these rodent species in the epidemiology and epizootiology of hantavirus infections remains unclear.  相似文献   

17.
为了研究黑龙江省大林姬鼠携带汉坦病毒(HV)的分子特征,对黑龙江省大林姬鼠分离株NA33的S基因进行了扩增和序列分析。结果表明,NA33株S基因全长由1 693nt组成,TA含量丰富,编码N蛋白的ORF起始于37nt,终止于1 326nt,编码的蛋白长429aa,符合HTN型编码。与HV参考毒株进行比较,NA33与Amur类汉坦病毒同源性最高,与其它HTN型相对较低,与SEO等同源性更低。N蛋白进化树分析表明,NA33位于Amur类病毒所在支系,并且与俄罗斯远东和吉林大林姬鼠分离株亲缘关系更接近,体现了一定的宿主依赖性和地理簇集性。序列分析发现,NA33的N蛋白具有Amur类汉坦病毒保守的氨基酸位点。黑龙江省大林姬鼠携带Amur类汉坦病毒,是重要的传染源。  相似文献   

18.
19.
Echinococcus granulosus sensu stricto (s.s.) is the major cause of human cystic echinococcosis worldwide and is listed among the most severe parasitic diseases of humans. To date, numerous studies have investigated the genetic diversity and population structure of E. granulosus s.s. in various geographic regions. However, there has been no global study. Recently, using mitochondrial DNA, it was shown that E. granulosus s.s. G1 and G3 are distinct genotypes, but a larger dataset is required to confirm the distinction of these genotypes. The objectives of this study were to: (i) investigate the distinction of genotypes G1 and G3 using a large global dataset; and (ii) analyse the genetic diversity and phylogeography of genotype G1 on a global scale using near-complete mitogenome sequences. For this study, 222 globally distributed E. granulosus s.s. samples were used, of which 212 belonged to genotype G1 and 10 to G3. Using a total sequence length of 11,682?bp, we inferred phylogenetic networks for three datasets: E. granulosus s.s. (n?=?222), G1 (n?=?212) and human G1 samples (n?=?41). In addition, the Bayesian phylogenetic and phylogeographic analyses were performed. The latter yielded several strongly supported diffusion routes of genotype G1 originating from Turkey, Tunisia and Argentina. We conclude that: (i) using a considerably larger dataset than employed previously, E. granulosus s.s. G1 and G3 are indeed distinct mitochondrial genotypes; (ii) the genetic diversity of E. granulosus s.s. G1 is high globally, with lower values in South America; and (iii) the complex phylogeographic patterns emerging from the phylogenetic and geographic analyses suggest that the current distribution of genotype G1 has been shaped by intensive animal trade.  相似文献   

20.
Hantaviruses: molecular biology, evolution and pathogenesis   总被引:14,自引:0,他引:14  
Hantaviruses are tri-segmented negative sense single stranded RNA viruses that belong to the family Bunyaviridae. In nature, hantaviruses are exclusively maintained in the populations of their specific rodent hosts. In their natural host species, hantaviruses usually develop a persistent infection with prolonged virus shedding in excreta. Humans become infected by inhaling virus contaminated aerosol. Unlike asymptomatic infection in rodents, hantaviruses cause two acute febrile diseases in humans: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). The mortality rate varies from 0.1% to 40% depending on the virus involved. Hantaviruses are distributed world wide, with over 150,000 HFRS and HPS cases being registered annually. In this review we summarize current knowledge on hantavirus molecular biology, epidemiology, genetic diversity and co-evolution with rodent hosts. In addition, special attention was given in this review to describing clinical manifestation of HFRS and HPS, and advances in our current understanding of the host immune response, treatment, and prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号