首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

RNA helicase A regulates a variety of RNA metabolism processes including HIV-1 replication and contains two double-stranded RNA binding domains (dsRBD1 and dsRBD2) at the N-terminus. Each dsRBD contains two invariant lysine residues critical for the binding of isolated dsRBDs to RNA. However, the role of these conserved lysine residues was not tested in the context of enzymatically active full-length RNA helicase A either in vitro or in the cells.

Methods

The conserved lysine residues in each or both of dsRBDs were substituted by alanine in the context of full-length RNA helicase A. The mutant RNA helicase A was purified from mammalian cells. The effects of these mutations were assessed either in vitro upon RNA binding and unwinding or in the cell during HIV-1 production upon RNA helicase A–RNA interaction and RNA helicase A-stimulated viral RNA processes.

Results

Unexpectedly, the substitution of the lysine residues by alanine in either or both of dsRBDs does not prevent purified full-length RNA helicase A from binding and unwinding duplex RNA in vitro. However, these mutations efficiently inhibit RNA helicase A-stimulated HIV-1 RNA metabolism including the accumulation of viral mRNA and tRNALys3 annealing to viral RNA. Furthermore, these mutations do not prevent RNA helicase A from binding to HIV-1 RNA in vitro as well, but dramatically reduce RNA helicase A–HIV-1 RNA interaction in the cells.

Conclusions

The conserved lysine residues of dsRBDs play critical roles in the promotion of HIV-1 production by RNA helicase A.

General significance

The conserved lysine residues of dsRBDs are key to the interaction of RNA helicase A with substrate RNA in the cell, but not in vitro.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Significant amounts of three tRNAs are associated with the 70 S RNA of avian myeloblastosis virus (AMV). The temperatures at which they are half dissociated from the 70 S RNA in 50 mM NaCl and their respective quantities relative to 35 S RNA are: tRNAArg, 51°C, 1.6; tRNALys, 57°C, 0.7 and tRNATrp, 76°C, 1.0. Possible functions for the non-primer tRNAs (tRNAArg and tRNALys) were evaluated by determining the effect of their thermal dissociation on: (a) conversion of 70 S to 35 S RNA, (b) capacity of 70 S and/or 35 S RNA to be translated in vitro, and (c) capacity of 70 S and/or 35 S RNA to be reverse transcribed in vitro. Conversion of 70 S to 35 S RNA occurred with a tm of 56°C and is consistent with the hypothesis that tRNALys might be involved in joining two 35 S RNA subunits to form the 70 S RNA complex. There was no indication that the association of either tRNAArg or tRNALys influenced the rate or quality of translation of 70 S or 35 S RNA. A decrease in the rate at which 70 S RNA is transcribed occurs in parallel with the dissociation of tRNAArg and tRNALys.  相似文献   

17.
RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71), which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3′-to-5′ unwinds RNA helices in an adenosine triphosphate (ATP)-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16), another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings increase our understanding of enteroviruses and the two types of RNA remodeling activities.  相似文献   

18.
19.
The hypothetical replicase or replicase subunit cistron in the 5'-proximal part of tobacco mosaic virus (TMV) RNA yields a major 126-K protein and a minor 183-K `readthrough' protein in vivo and in vitro. Two natural suppressor tRNAs were purified from uninfected tobacco plants on the basis of their ability to promote readthrough over the corresponding UAG termination codon in vitro. In a reticulocyte lysate the yield of 183-K readthrough protein increases from ˜10% in the absence of added tobacco plant tRNA up to ˜35% in the case of pure tRNATyr added. Their amino acid acceptance and anticodon sequence (GψA) identifies the two natural suppressor tRNAs as the two normal major cytoplasmic tyrosine-specific tRNAs. tRNATyr1 has an A:U pair at the base of the TψC stem and an unmodified G10, whereas tRNATyr2 contains a G:C pair in the corresponding location and m2G in position 10. This is the first case that, in a higher eukaryote, the complete structure is known of both the natural suppressor tRNAs and the corresponding viral RNA on which they exert their function. The corresponding codon-anticodon interaction, which is not in accordance with the wobble hypothesis, and the possible biological significance of the readthrough phenomenon is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号