首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The hedgehog (Hh) pathway is conserved from Drosophila to humans and plays a key role in embryonic development. In addition, activation of the pathway in somatic cells contributes to cancer development in several tissues. Suppressor of fused is a negative regulator of Hh signaling. Targeted disruption of the murine suppressor of fused gene (Sufu) led to a phenotype that included neural tube defects and lethality at mid-gestation (9.0-10.5 dpc). This phenotype resembled that caused by loss of patched (Ptch1), another negative regulator of the Hh pathway. Consistent with this finding, Ptch1 and Sufu mutants displayed excess Hh signaling and resultant altered dorsoventral patterning of the neural tube. Sufu mutants also had abnormal cardiac looping, indicating a defect in the determination of left-right asymmetry. Marked expansion of nodal expression in 7.5 dpc embryos and variable degrees of node dysmorphology in 7.75 dpc embryos suggested that the pathogenesis of the cardiac developmental abnormalities was related to node development. Other mutants of the Hh pathway, such as Shh, Smo and Shh/Ihh compound mutants, also have laterality defects. In contrast to Ptch1 heterozygous mice, Sufu heterozygotes had no developmental defects and no apparent tumor predisposition. The resemblance of Sufu homozygotes to Ptch1 homozygotes is consistent with mouse Sufu being a conserved negative modulator of Hh signaling.  相似文献   

14.
15.
Members of the Hedgehog (Hh) family of intercellular signaling molecules play crucial roles in animal development. Aberrant regulation of Hh signaling in humans causes developmental defects, and leads to various genetic disorders and cancers. We have characterized a novel regulator of Hh signaling through the analysis of the zebrafish midline mutant iguana (igu). Mutations in igu lead to reduced expression of Hh target genes in the ventral neural tube, similar to the phenotype seen in zebrafish mutants known to affect Hh signaling. Contradictory at first sight, igu mutations lead to expanded Hh target gene expression in somites. Genetic and pharmacological analyses revealed that the expression of Hh target genes in igu mutants requires Gli activator function but does not depend on Smoothened function. Our results show that the ability of Gli proteins to activate Hh target gene expression in response to Hh signals is generally reduced in igu mutants both in the neural tube and in somites. Although this reduced Hh signaling activity leads to a loss of Hh target gene expression in the neural tube, the same low levels of Hh signaling appear to be sufficient to activate Hh target genes throughout somites because of different threshold responses to Hh signals. We also show that Hh target gene expression in igu mutants is resistant to increased protein kinase A activity that normally represses Hh signaling. Together, our data indicate that igu mutations impair both the full activation of Gli proteins in response to Hh signals, and the negative regulation of Hh signaling in tissues more distant from the source of Hh. Positional cloning revealed that the igu locus encodes Dzip1, a novel intracellular protein that contains a single zinc-finger protein-protein interaction domain. Overexpression of Igu/Dzip1 proteins suggested that Igu/Dzip1 functions in a permissive way in the Hh signaling pathway. Taken together, our studies show that Igu/Dzip1 functions as a permissive factor that is required for the proper regulation of Hh target genes in response to Hh signals.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号