首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A growing number of studies are examining the factors driving historical and contemporary evolution in wild populations. By combining surveys of genomic variation with a comprehensive assessment of environmental parameters, such studies can increase our understanding of the genomic and geographical extent of local adaptation in wild populations. We used a large‐scale landscape genomics approach to examine adaptive and neutral differentiation across 54 North American populations of Atlantic salmon representing seven previously defined genetically distinct regional groups. Over 5500 genome‐wide single nucleotide polymorphisms were genotyped in 641 individuals and 28 bulk assays of 25 pooled individuals each. Genome scans, linkage map, and 49 environmental variables were combined to conduct an innovative landscape genomic analysis. Our results provide valuable insight into the links between environmental variation and both neutral and potentially adaptive genetic divergence. In particular, we identified markers potentially under divergent selection, as well as associated selective environmental factors and biological functions with the observed adaptive divergence. Multivariate landscape genetic analysis revealed strong associations of both genetic and environmental structures. We found an enrichment of growth‐related functions among outlier markers. Climate (temperature–precipitation) and geological characteristics were significantly associated with both potentially adaptive and neutral genetic divergence and should be considered as candidate loci involved in adaptation at the regional scale in Atlantic salmon. Hence, this study significantly contributes to the improvement of tools used in modern conservation and management schemes of Atlantic salmon wild populations.  相似文献   

2.
Spatially varying selection triggers differential adaptation of local populations. Here, we mined the determinants of local adaptation at the genomewide scale in the two closest maize wild relatives, the teosintes Zea mays ssp parviglumis and ssp. mexicana. We sequenced 120 individuals from six populations: two lowland, two intermediate and two highland populations sampled along two altitudinal gradients. We detected 8 479 581 single nucleotide polymorphisms (SNPs) covered in the six populations with an average sequencing depth per site per population ranging from 17.0× to 32.2×. Population diversity varied from 0.10 to 0.15, and linkage disequilibrium decayed very rapidly. We combined two differentiation‐based methods, and correlation of allele frequencies with environmental variables to detect outlier SNPs. Outlier SNPs displayed significant clustering. From clusters, we identified 47 candidate regions. We further modified a haplotype‐based method to incorporate genotype uncertainties in haplotype calling, and applied it to candidate regions. We retrieved evidence for selection at the haplotype level in 53% of our candidate regions, and in 70% of the cases the same haplotype was selected in the two lowland or the two highland populations. We recovered a candidate region located within a previously characterized inversion on chromosome 1. We found evidence of a soft sweep at a locus involved in leaf macrohair variation. Finally, our results revealed frequent colocalization between our candidate regions and loci involved in the variation of traits associated with plant–soil interactions such as root morphology, aluminium and low phosphorus tolerance. Soil therefore appears to be a major driver of local adaptation in teosintes.  相似文献   

3.
Collin H  Fumagalli L 《Molecular ecology》2011,20(21):4490-4502
Natural selection drives local adaptation, potentially even at small temporal and spatial scales. As a result, adaptive genetic and phenotypic divergence can occur among populations living in different habitats. We investigated patterns of differentiation between contrasting lake and stream habitats in the cyprinid fish European minnow (Phoxinus phoxinus) at both the morphological and genomic levels using geometric morphometrics and AFLP markers, respectively. We also used a spatial correlative approach to identify AFLP loci associated with environmental variables representing potential selective forces responsible for adaptation to divergent habitats. Our results identified different morphologies between lakes and streams, with lake fish presenting a deeper body and caudal peduncle compared to stream fish. Body shape variation conformed to a priori predictions concerning biomechanics and swimming performance in lakes vs. streams. Moreover, morphological differentiation was found to be associated with several environmental variables, which could impose selection on body and caudal peduncle shape. We found adaptive genetic divergence between these contrasting habitats in the form of 'outlier' loci (2.9%) whose genetic divergence exceeded neutral expectations. We also detected additional loci (6.6%) not associated with habitat type (lake vs. stream), but contributing to genetic divergence between populations. Specific environmental variables related to trophic dynamics, landscape topography and geography were associated with several neutral and outlier loci. These results provide new insights into the morphological divergence and genetic basis of adaptation to differentiated habitats.  相似文献   

4.
Understanding the genetic basis of adaptation in response to environmental variation is fundamental as adaptation plays a key role in the extension of ecological niches to marginal habitats and in ecological speciation. Based on the assumption that some genomic markers are correlated to environmental variables, we aimed to detect loci of ecological relevance in the alpine plant Arabis alpina L. sampled in two regions, the French (99 locations) and the Swiss (109 locations) Alps. We used an unusually large genome scan [825 amplified fragment length polymorphism loci (AFLPs)] and four environmental variables related to temperature, precipitation and topography. We detected linkage disequilibrium among only 3.5% of the considered AFLP loci. A population structure analysis identified no admixture in the study regions, and the French and Swiss Alps were differentiated and therefore could be considered as two independent regions. We applied generalized estimating equations (GEE) to detect ecologically relevant loci separately in the French and Swiss Alps. We identified 78 loci of ecological relevance (9%), which were mainly related to mean annual minimum temperature. Only four of these loci were common across the French and Swiss Alps. Finally, we discuss that the genomic characterization of these ecologically relevant loci, as identified in this study, opens up new perspectives for studying functional ecology in A. alpina, its relatives and other alpine plant species.  相似文献   

5.
Many species that undergo long breeding migrations, such as anadromous fishes, face highly heterogeneous environments along their migration corridors and at their spawning sites. These environmental challenges encountered at different life stages may act as strong selective pressures and drive local adaptation. However, the relative influence of environmental conditions along the migration corridor compared with the conditions at spawning sites on driving selection is still unknown. In this study, we performed genome–environment associations (GEA) to understand the relationship between landscape and environmental conditions driving selection in seven populations of the anadromous Chinook salmon (Oncorhynchus tshawytscha)—a species of important economic, social, cultural, and ecological value—in the Columbia River basin. We extracted environmental variables for the shared migration corridors and at distinct spawning sites for each population, and used a Pool‐seq approach to perform whole genome resequencing. Bayesian and univariate GEA tests with migration‐specific and spawning site‐specific environmental variables indicated many more candidate SNPs associated with environmental conditions at the migration corridor compared with spawning sites. Specifically, temperature, precipitation, terrain roughness, and elevation variables of the migration corridor were the most significant drivers of environmental selection. Additional analyses of neutral loci revealed two distinct clusters representing populations from different geographic regions of the drainage that also exhibit differences in adult migration timing (summer vs. fall). Tests for genomic regions under selection revealed a strong peak on chromosome 28, corresponding to the GREB1L/ROCK1 region that has been identified previously in salmonids as a region associated with adult migration timing. Our results show that environmental variation experienced throughout migration corridors imposed a greater selective pressure on Chinook salmon than environmental conditions at spawning sites.  相似文献   

6.
Genetic linkage map of olive flounder, Paralichthys olivaceus   总被引:1,自引:0,他引:1       下载免费PDF全文
Olive flounder, Paralichthys olivaceus, is an important fish species in Asia, both for fisheries and aquaculture. As the first step for better understanding the genomic structure and functional analysis, we constructed a genetic linkage map for olive flounder based on 180 microsatellites and 31 expressed sequence tag (EST)-derived markers. Twenty-four linkage groups were identified, consistent with the 24 chromosomes of this species. The total map distance was 1,001.3 cM based on Kosambi sex-average mapping, and the average inter-locus distance was 4.7 cM. Linkage between the loci was identified by an LOD score of ≥3. This linkage map may be used to map quantitative trait loci associated with important traits of the species and may assist in breeding programs.  相似文献   

7.
There is increasing evidence regarding the role of chromosomal inversions in relevant biological processes such as local adaptation and speciation. A classic example of the adaptive role of chromosomal polymorphisms is given by the clines of inversion frequencies in Drosophila subobscura, repeatable across continents. Nevertheless, not much is known about the molecular variation associated with these polymorphisms. We characterized the genetic content of ca. 600 individuals from nine European populations following a latitudinal gradient by analysing 19 microsatellite loci from two autosomes (J and U) and the sex chromosome (A), taking into account their chromosomal inversions. Our results clearly demonstrate the molecular genetic uniformity within a given chromosomal inversion across a large latitudinal gradient, particularly from Groningen (Netherlands) in the north to Málaga (Spain) in the south, experiencing highly diverse environmental conditions. This low genetic differentiation within the same gene arrangement across the nine European populations is consistent with the local adaptation hypothesis for th evolutionof chromosomal polymorphisms. We also show the effective role of chromosomal inversions in maintaining different genetic pools within these inverted genomic regions even in the presence of high gene flow. Inversions represent thus an important barrier to gene flux and can help maintain specific allelic combinations with positive effects on fitness. Consistent patterns of microsatellite allele-inversion linkage disequilibrium particularly in loci within inversions were also observed. Finally, we identified areas within inversions presenting clinal variation that might be under selection.  相似文献   

8.
Genetic linkage maps of Fenneropenaeus chinensis were constructed using a “double pseudo-testcross” strategy with 200 single nucleotide polymorphisms (SNPs) markers. This study represents the first SNP genetic linkage map for F. chinensis. The parents and F 1 progeny of 100 individuals were used as mapping populations. 21 genetic linkage groups in the male and female maps were identified. The male linkage map was composed of 115 loci and spanned 879.7 cM, with an average intermarker spacing of 9.4 cM, while the female map was composed of 119 loci and spanned 876.2 cM, with an average intermarker spacing of 8.9 cM. The estimated coverage of the linkage maps was 51.94% for the male and 53.77% for the female, based on two estimates of genome length. The integrated map contains 180 markers distributed in 16 linkage groups, and spans 899.3 cM with an average marker interval of 5.2 cM. This SNP genetic map lays the foundation for future shrimp genomics and genetic breeding studies, especially the discovery of gene or regions for economically important traits in Chinese shrimp.  相似文献   

9.
Selection on complex traits can rapidly drive evolution, especially in stressful environments. This polygenic selection does not leave intense sweep signatures on the genome, rather many loci experience small allele frequency shifts, resulting in large cumulative phenotypic changes. Directional selection and local adaptation are changing populations; but, identifying loci underlying polygenic or environmental selection has been difficult. We use genomic data on tens of thousands of cattle from three populations, distributed over time and landscapes, in linear mixed models with novel dependent variables to map signatures of selection on complex traits and local adaptation. We identify 207 genomic loci associated with an animal’s birth date, representing ongoing selection for monogenic and polygenic traits. Additionally, hundreds of additional loci are associated with continuous and discrete environments, providing evidence for historical local adaptation. These candidate loci highlight the nervous system’s possible role in local adaptation. While advanced technologies have increased the rate of directional selection in cattle, it has likely been at the expense of historically generated local adaptation, which is especially problematic in changing climates. When applied to large, diverse cattle datasets, these selection mapping methods provide an insight into how selection on complex traits continually shapes the genome. Further, understanding the genomic loci implicated in adaptation may help us breed more adapted and efficient cattle, and begin to understand the basis for mammalian adaptation, especially in changing climates. These selection mapping approaches help clarify selective forces and loci in evolutionary, model, and agricultural contexts.  相似文献   

10.
In the face of predicted climate change, a broader understanding of biotic responses to varying environments has become increasingly important within the context of biodiversity conservation. Local adaptation is one potential option, yet remarkably few studies have harnessed genomic tools to evaluate the efficacy of this response within natural populations. Here, we show evidence of selection driving divergence of a climate‐change‐sensitive mammal, the American pika (Ochotona princeps), distributed along elevation gradients at its northern range margin in the Coast Mountains of British Columbia (BC), Canada. We employed amplified‐fragment‐length‐polymorphism‐based genomic scans to conduct genomewide searches for candidate loci among populations inhabiting varying environments from sea level to 1500 m. Using several independent approaches to outlier locus detection, we identified 68 candidate loci putatively under selection (out of a total 1509 screened), 15 of which displayed significant associations with environmental variables including annual precipitation and maximum summer temperature. These candidate loci may represent important targets for predicting pika responses to climate change and informing novel approaches to wildlife conservation in a changing world.  相似文献   

11.
12.
Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves (Canis lupus) exhibit distinct north–south population differentiation. We investigated more than 67‐K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n = 32, Carpathian Mountains n = 7, Dinaric‐Balkan n = 9, Ukrainian Steppe n = 11). Our analyses combined identification of outlier loci with findings from genome‐wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1 Mb, one million bases) regions in the dog (C. lupus familiaris) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long‐term separation among population clusters.  相似文献   

13.
As an increasing number of ecosystems face departures from long standing environmental conditions under climate change, our understanding of the capacity of species to adapt will become important for directing conservation and management of biodiversity. Insights into the potential for genetic adaptation might be gained by assessing genomic signatures of adaptation to historic or prevailing environmental conditions. The river red gum (Eucalyptus camaldulensis Dehnh.) is a widespread Australian eucalypt inhabiting riverine and floodplain habitats which spans strong environmental gradients. We investigated the effects of adaptation to environment on population level genetic diversity of E. camaldulensis, examining SNP variation in candidate gene loci sampled across 20 climatically diverse populations approximating the species natural distribution. Genetic differentiation among populations was high (FST = 17%), exceeding previous estimates based on neutral markers. Complementary statistical approaches identified 6 SNP loci in four genes (COMT, Dehydrin, ERECTA and PIP2) which, after accounting for demographic effects, exhibited higher than expected levels of genetic differentiation among populations and whose allelic variation was associated with local environment. While this study employs but a small proportion of available diversity in the eucalyptus genome, it draws our attention to the potential for application of wide spread eucalypt species to test adaptive hypotheses.  相似文献   

14.
Powdery mildew limits cucumber production worldwide. Most resistant cucumber cultivars become susceptible to powdery mildew at low temperatures. Resistance within a wide temperature range is therefore desirable for cucumber production. We constructed a cucumber genetic linkage map based on a population of 111 recombinant inbred lines derived from a cross between CS-PMR1, with strong and temperature-independent resistance, and Santou, with moderate and temperature-dependent resistance. The map spans 693.0 cM and consists of 296 markers segregating into seven linkage groups; the markers include 289 simple sequence repeats (SSRs), six sequence characterized amplified regions, and one inter simple sequence repeat. Due to the presence of 150 common SSR markers, we were able to compare our map with previously published maps obtained by using populations derived from inter- or intra-variety crosses. We also evaluated powdery mildew resistance of the recombinant inbred lines and identified seven quantitative trait loci (QTL) contributed by CS-PMR1 and two QTL contributed by Santou. Four QTL (pm3.1, pm5.1, pm5.2 and pm5.3) were successfully validated by using populations derived from residual heterozygous lines. Some of the QTL identified in our study are in good agreement with previously published results obtained with materials of different origin. The markers reported here would be useful for introducing high and temperature-independent resistance by accumulation of QTL from CS-PMR1 and Santou.  相似文献   

15.
Breeding for climate resilience is currently an important goal for sustainable livestock production. Local adaptations exhibited by indigenous livestock allow investigating the genetic control of this resilience. Ecological niche modeling (ENM) provides a powerful avenue to identify the main environmental drivers of selection. Here, we applied an integrative approach combining ENM with genome-wide selection signature analyses (XPEHH and Fst) and genotype−environment association (redundancy analysis), with the aim of identifying the genomic signatures of adaptation in African village chickens. By dissecting 34 agro-climatic variables from the ecosystems of 25 Ethiopian village chicken populations, ENM identified six key drivers of environmental challenges: One temperature variable—strongly correlated with elevation, three precipitation variables as proxies for water availability, and two soil/land cover variables as proxies of food availability for foraging chickens. Genome analyses based on whole-genome sequencing (n = 245), identified a few strongly supported genomic regions under selection for environmental challenges related to altitude, temperature, water scarcity, and food availability. These regions harbor several gene clusters including regulatory genes, suggesting a predominantly oligogenic control of environmental adaptation. Few candidate genes detected in relation to heat-stress, indicates likely epigenetic regulation of thermo-tolerance for a domestic species originating from a tropical Asian wild ancestor. These results provide possible explanations for the rapid past adaptation of chickens to diverse African agro-ecologies, while also representing new landmarks for sustainable breeding improvement for climate resilience. We show that the pre-identification of key environmental drivers, followed by genomic investigation, provides a powerful new approach for elucidating adaptation in domestic animals.  相似文献   

16.
Uncovering the genetic basis of adaptation hinges on the ability to detect loci under selection. However, population genomics outlier approaches to detect selected loci may be inappropriate for clinal populations or those with unclear population structure because they require that individuals be clustered into populations. An alternate approach, landscape genomics, uses individual‐based approaches to detect loci under selection and reveal potential environmental drivers of selection. We tested four landscape genomics methods on a simulated clinal population to determine their effectiveness at identifying a locus under varying selection strengths along an environmental gradient. We found all methods produced very low type I error rates across all selection strengths, but elevated type II error rates under “weak” selection. We then applied these methods to an AFLP genome scan of an alpine plant, Campanula barbata, and identified five highly supported candidate loci associated with precipitation variables. These loci also showed spatial autocorrelation and cline patterns indicative of selection along a precipitation gradient. Our results suggest that landscape genomics in combination with other spatial analyses provides a powerful approach for identifying loci potentially under selection and explaining spatially complex interactions between species and their environment.  相似文献   

17.
The genetic loci affecting the commonly used BMI have been intensively investigated using linkage approaches in multiple populations. This study aims at performing the first genome‐wide linkage scan on BMI in the Chinese population in mainland China with hypothesis that heterogeneity in genetic linkage could exist in different ethnic populations. BMI was measured from 126 dizygotic twins in Qingdao municipality who were genotyped using high‐resolution Affymetrix Genome‐Wide Human SNP arrays containing about 1 million single‐nucleotide polymorphisms (SNPs). Nonparametric linkage analysis was performed with Merlin software package for linkage analysis using variance components approach for quantitative trait loci mapping. We identified a strong linkage peak at the end of chromosome 7 (7q36 at 186 cM) with a lod score of 4.06 which overlaps with that reported by a large multicenter study in western countries. Multiple loci showing suggestive linkage were found on chromosome 1 (lod score 2.38 at 242 cM), chromosome 8 (2.48 at 95 cM), and chromosome 14 (2.2 at 89.4 cM). The strong linkage identified in the Chinese subjects that is consistent with that found in populations of European origin could suggest the existence of evolutionarily preserved genetic mechanisms for BMI whereas the multiple suggestive loci could represent genetic effect from gene—environment interaction as a result of population‐specific environmental adaptation.  相似文献   

18.
19.
Elucidation of the evolutionary processes that constrain or facilitate adaptive divergence is a central goal in evolutionary biology, especially in non-model organisms. We tested whether changes in dynamics of gene flow (historical vs contemporary) caused population isolation and examined local adaptation in response to environmental selective forces in fragmented Rhododendron oldhamii populations. Variation in 26 expressed sequence tag-simple sequence repeat loci from 18 populations in Taiwan was investigated by examining patterns of genetic diversity, inbreeding, geographic structure, recent bottlenecks, and historical and contemporary gene flow. Selection associated with environmental variables was also examined. Bayesian clustering analysis revealed four regional population groups of north, central, south and southeast with significant genetic differentiation. Historical bottlenecks beginning 9168–13,092 years ago and ending 1584–3504 years ago were revealed by estimates using approximate Bayesian computation for all four regional samples analyzed. Recent migration within and across geographic regions was limited. However, major dispersal sources were found within geographic regions. Altitudinal clines of allelic frequencies of environmentally associated positively selected outliers were found, indicating adaptive divergence. Our results point to a transition from historical population connectivity toward contemporary population isolation and divergence on a regional scale. Spatial and temporal dispersal differences may have resulted in regional population divergence and local adaptation associated with environmental variables, which may have played roles as selective forces at a regional scale.  相似文献   

20.
C Li  Y Sun  H W Huang  C H Cannon 《Heredity》2014,113(6):533-541
Given predicted rapid climate change, an understanding of how environmental factors affect genetic diversity in natural populations is important. Future selection pressures are inherently unpredictable, so forest management policies should maintain both overall diversity and identify genetic markers associated with the environmental factors expected to change most rapidly, like temperature and rainfall. In this study, we genotyped 648 individuals in 28 populations of Castanopsis fargesii (Fagaceae) using 32 expressed sequence tag (EST)-derived microsatellite markers. After removing six loci that departed from Hardy–Weinberg equilibrium, we measured genetic variation, population structure and identified candidate loci putatively under selection by temperature and precipitation. We found that C. fargesii populations possessed high genetic diversity and moderate differentiation among them, indicating predominant outcrossing and few restrictions to gene flow. These patterns reduce the possible impact of stochastic effects or the influence of genetic isolation. Clear footprints of divergent selection at four loci were discovered. Frequencies of five alleles at these loci were strongly correlated with environmental factors, particularly extremes in precipitation. These alleles varied from being near fixation at one end of the gradient to being completely absent at the other. Our study species is an important forest tree in the subtropical regions of China and could have a major role in future management and reforestation plans. Our results demonstrate that the gene flow is widespread and abundant in natural populations, maintaining high diversity, while diversifying selection is acting on specific genomic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号