首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《MABS-AUSTIN》2013,5(4):509-520
The role of Fc glycans on clearance of IgG molecule has been examined by various groups in experiments where specific glycans have been enriched or the entire spectrum of glycans was studied after administration in pre-clinical or clinical pharmacokinetic (PK) studies. The overall conclusions from these studies are inconsistent, which may result from differences in antibody structure or experimental design. In the present study a well-characterized recombinant monoclonal IgG1 molecule (mAb-1) was analyzed from serum samples obtained from a human PK study. mAb-1 was recovered from serum using its ligand cross-linked to Sepharose beads. The overall purity and recovery of all isoforms were carefully evaluated using a variety of methods. Glycans were then enzymatically cleaved, labeled using 2-aminobenzamide and analyzed by normal phase high performance liquid chromatography. The assays for recovering mAb-1 from serum and subsequent glycan analysis were rigorously qualified at a lower limit of quantitation of 15 μg/mL, thus permitting analysis to day 14 of the clinical PK study. Eight glycans were monitored and classified into two groups: (1) the oligomannose type structures (M5, M6 and M7) and (2) fucosylated biantennary oligosaccharides (FBO) structures (NGA2F, NA1F, NA2F, NA1F-GlcNAc and NGA2F-GlcNAc). We observed that the oligomannose species were cleared at a much faster rate (40%) than FBOs and conclude that high mannose species should be carefully monitored and controlled as they may affect PK of the therapeutic; they should thus be considered an important quality attribute. These observations were only possible through the application of rigorous analytical methods that we believe will need to be employed when comparing innovator and biosimilar molecules.  相似文献   

2.
Analysis of the glycosylation of human serum IgD and IgE indicated that oligomannose structures are present on both Igs. The relative proportion of the oligomannose glycans is consistent with the occupation of one N-linked site on each heavy chain. We evaluated the accessibility of the oligomannose glycans on serum IgD and IgE to mannan-binding lectin (MBL). MBL is a member of the collectin family of proteins, which binds to oligomannose sugars. It has already been established that MBL binds to other members of the Ig family, such as agalactosylated glycoforms of IgG and polymeric IgA. Despite the presence of potential ligands, MBL does not bind to immobilized IgD and IgE. Molecular modeling of glycosylated human IgD Fc suggests that the oligomannose glycans located at Asn(354) are inaccessible because the complex glycans at Asn(445) block access to the site. On IgE, the additional C(H)2 hinge domain blocks access to the oligomannose glycans at Asn(394) on one H chain by adopting an asymmetrically bent conformation. IgE contains 8.3% Man(5)GlcNAc(2) glycans, which are the trimmed products of the Glc(3)Man(9)GlcNAc(2) oligomannose precursor. The presence of these structures suggests that the C(H)2 domain flips between two bent quaternary conformations so that the oligomannose glycans on each chain become accessible for limited trimming to Man(5)GlcNAc(2) during glycan biosynthesis. This is the first study of the glycosylation of human serum IgD and IgE from nonmyeloma proteins.  相似文献   

3.
The serum collectin mannan-binding lectin (MBL) binds to oligomannose and GlcNAc-terminating glycans present on microorganisms. Using a commercial affinity chromatography resin containing immobilized MBL we screened human and mouse serum for endogenous MBL-binding targets. We isolated the serum protease inhibitor alpha(2) macroglobulin (alpha2M), a heavily glycosylated thiol ester protein (TEP) composed of four identical 180-kDa subunits, each of which has eight N-linked glycosylation sites. alpha2M has previously been reported to interact with MBL; however, the interaction was not characterized. We investigated the mechanism of formation of complexes between alpha2M and MBL and concluded that they form by the direct binding of oligomannose glycans Man(5-7) occupying Asn-846 on alpha2M to the lectin domains (carbohydrate recognition domains) of MBL. The oligomannose glycans are accessible for lectin binding on both active alpha2M (thiol ester intact) and protease-cleaved alpha2M (thiol ester cleaved). We demonstrate that MBL is able to interact with alpha2M in the fluid phase, but the interaction does not inhibit the binding of MBL to mannan-coated surfaces. In addition to alpha2M, two other members of the TEP family, C3 and C4, which also contain oligomannose glycans, were captured from human serum using the MBL resin. MBL binding may be a conserved feature of the TEPs, dating from their ancestral origins. We suggest that the inhibition of proteases on the surface of microorganisms by an ancestral alpha2M-like TEP may generate "arrays" of oligomannose glycans to which MBL or other lectins can bind. Binding would lead to opsonization or activation of enzyme systems such as complement.  相似文献   

4.
Rapid production of recombinant human IgG with improved antibody dependent cell‐mediated cytotoxicity (ADCC) effector function is presented. The technique employs transient expression of IgG in suspension growing HEK‐293F cells in the presence of the glycosidase inhibitor kifunensine. The procedure takes ~7 days, provided that expression plasmids encoding the IgG of interest are available. Kifunensine inhibits the N‐linked glycosylation pathway of HEK‐293F cells in the endoplasmatic reticulum, resulting in IgG with oligomannose type glycans lacking core‐fucose. IgG1 transiently produced in kifunensine‐ treated HEK‐293F cells has improved affinity for the FcγRIIIA molecule as measured in an ELISA based assay, and almost eightfold enhanced ADCC using primary peripheral blood mononuclear effector cells. Biotechnol. Bioeng. 2010; 105: 350–357. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Fibrin-directed monoclonal antibodies may be clinically useful for in vitro thrombus imaging and for the targeting of fibrinolytic agents to blood clots. One such murine monoclonal antibody, (mAb-15C5), raised against the fragment-D dimer epitope of cross-linked human fibrin, was previously characterized [Holvoet, P., Stassen, J. M., Hashimoto, Y., Spriggs, D., Devos, P. & Collen, D. (1989) Thromb. Haemostasis 61, 307-313] has recently been cloned and expressed [Vandamme, A.-M., Bulens, F., Bernar, H., Nelles, L., Lijnen, H. R. & Collen, D. (1990) Eur. J. Biochem. 192, 767-775]. In order to reduce the immunogenicity of the murine mAb-15C5 in man, we have now constructed a murine--human chimera of mAb-15C5, by substituting the cDNA sequences encoding the constant regions of the murine kappa light chain and gamma 1 heavy chain by the corresponding human genomic sequences. Both chimeric murine--human Ig chains were cloned into two separately selectable expression vectors, which were contransfected into Chinese hamster ovary (CHO) cells. Murine--human chimeric mAb-15C5 (mAb-15C5Hu) was purified from the conditioned medium of selected cell lines by chromatography on Zn-chelating Sepharose, protein-A-Sepharose and on insolubilized antigen (fragment-D dimer), with a final yield of 29 micrograms/l and a recovery of 33%. SDS/PAGE without reduction revealed a homogeneous band with a mobility similar to that of natural mAb-15C5, whereas after reduction, both the heavy and the light chains had slightly slower mobilities than their natural counterparts. Expression in the presence of tunicamycin suggested that the differences in gamma 1-chain mobility were due to different N-glycosylation patterns. Immunoblotting of proteins from SDS gels showed immunological reactivity of recombinant mAb-15C5Hu with goat anti-(human IgG) IgG and of recombinant and natural murine mAb-15C5 with goat anti-(mouse IgG) IgG. Competitive binding revealed a comparable affinity of recombinant murine mAb-15C5, recombinant mAb-15C5Hu and natural mAb-15C5, for fragment-D dimer, indicating that recombinant mAb-15C5Hu was obtained in a functionally intact form. Thus, mAb-15C5Hu may constitute a useful alternative to mAb-15C5 for in vivo use in man.  相似文献   

6.
To understand how the carbohydrate moieties of a recombinant glycoprotein affected its pharmacokinetic (PK) properties, the glycan distribution was directly assessed from serial blood samples taken during PK studies in cynomolgus monkeys and humans. The protein studied was an immunoadhesin (lenercept), containing an Fc domain from human immunoglobulin G (IgG-1) and two copies of the extensively glycosylated extra cellular domain of tumor necrosis factor receptor p55. The protein was recovered in pure form using a dual column, immunoaffinity-reversed-phase high-performance liquid chromatography method. The glycans were released and analyzed by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Alternatively, trypsin was used to obtain glycopeptides, and these were analyzed by MALDI-TOF. The composition versus time profiles show that the distribution of glycans in the Fc domain was not altered over 10 days of circulation, consistent with their sequestration in the interior of the protein. However, the glycan composition in the receptor domain was changed dramatically in the first 24 h and then remained relatively constant. Analysis of the acidic glycans (derived exclusively from the receptor domain) showed that, in the rapid initial phase of clearance, glycans carrying terminal N-acetylglucosamine (tGlcNAc) were selectively cleared from the circulation. This phenomenon occurred similarly in humans and cynomolgus monkeys. Sialic acid content and terminal galactose showed only small changes. These data confirm the correlation of tGlcNAc and half-life of the molecule, and support the hypothesis that the mannose receptor (which can also bind tGlcNAc) causes the variable clearance of this molecule.  相似文献   

7.
The glycoprotein IgM is the major antibody produced in the primary immune response to antigens, circulating in the serum both as a pentamer and a hexamer. Pentameric IgM has a single J chain, which is absent in the hexamer. The mu (heavy) chain of IgM has five N-linked glycosylation sites. Asn-171, Asn-332, and Asn-395 are occupied by complex glycans, whereas Asn-402 and Asn-563 are occupied by oligomannose glycans. The glycosylation of human polyclonal IgM from serum has been analyzed. IgM was found to contain 23.4% oligomannose glycans GlcNAc2Man5-9, consistent with 100% occupancy of Asn-402 and 17% occupancy of the variably occupied site at Asn-563. Mannan-binding lectin (MBL) is a member of the collectin family of proteins, which bind to oligomannose and GlcNAc-terminating structures. A commercial affinity chromatography resin containing immobilized MBL has been reported to be useful for partial purification of mouse and also human IgM. Human IgM glycoforms that bind to immobilized MBL were isolated; these accounted for only 20% of total serum IgM. Compared with total serum IgM, the MBL-binding glycoforms contained 97% more GlcNAc-terminating structures and 8% more oligomannose structures. A glycosylated model of pentameric IgM was constructed, and from this model, it became evident that IgM has two distinct faces, only one of which can bind to antigen, as the J chain projects from the non-antigen-binding face. Antigen-bound IgM does not bind to MBL, as the target glycans appear to become inaccessible once IgM has bound antigen. Antigen-bound IgM pentamers therefore do not activate complement via the lectin pathway, but MBL might have a role in the clearance of aggregated IgM.  相似文献   

8.
A mammalian N-acetylglucosamine (GlcNAc) transferase I (GnT I)-independent fucosylation pathway is revealed by the use of matrix-assisted laser desorption/ionization (MALDI) and negative-ion nano-electrospray ionization (ESI) mass spectrometry of N-linked glycans from natively folded recombinant glycoproteins, expressed in both human embryonic kidney (HEK) 293S and Chinese hamster ovary (CHO) Lec3.2.8.1 cells deficient in GnT I activity. The biosynthesis of core fucosylated Man5GlcNAc2 glycans was enhanced in CHO Lec3.2.8.1 cells by the alpha-glucosidase inhibitor, N-butyldeoxynojirimycin (NB-DNJ), leading to the increase in core fucosylated Man5GlcNAc2 glycans and the biosynthesis of a novel core fucosylated monoglucosylated oligomannose glycan, Glc1Man7GlcNAc2Fuc. Furthermore, no fucosylated Man9GlcNAc2 glycans were detected following inhibition of alpha-mannosidase I with kifunensine. Thus, core fucosylation is prevented by the presence of terminal alpha1-2 mannoses on the 6-antennae but not the 3-antennae of the trimannosyl core. Fucosylated Man5GlcNAc2 glycans were also detected on recombinant glycoprotein from HEK 293T cells following inhibition of Golgi alpha-mannosidase II with swainsonine. The paucity of fucosylated oligomannose glycans in wild-type mammalian cells is suggested to be due to kinetic properties of the pathway rather than the absence of the appropriate catalytic activity. The presence of the GnT I-independent fucosylation pathway is an important consideration when engineering mammalian glycosylation.  相似文献   

9.
The N-linked oligomannose glycans of HIV gp120 are a target for both microbicide and vaccine design. The extent of cross-clade conservation of HIV oligomannose glycans is therefore a critical consideration for the development of HIV prophylaxes. We measured the oligomannose content of virion-associated gp120 from primary virus from PBMCs for a range of viral isolates and showed cross-clade elevation (62-79%) of these glycans relative to recombinant, monomeric gp120 (~30%). We also confirmed that pseudoviral production systems can give rise to notably elevated gp120 oligomannose levels (~98%), compared to gp120 derived from a single-plasmid viral system using the HIV(LAI) backbone (56%). This study highlights differences in glycosylation between virion-associated and recombinant gp120.  相似文献   

10.
The HIV envelope has evolved a dense array of immunologically "self" carbohydrates that efficiently protect the virus from antibody recognition. Nonetheless, one broadly neutralising antibody, IgG1 2G12, has been shown to recognise a cluster of oligomannose glycans on the HIV-1 surface antigen gp120. Thus the self carbohydrates of HIV are now regarded as potential targets for viral neutralisation and vaccine design. Here, we show that chemical inhibition of mammalian glycoprotein synthesis, with the plant alkaloid kifunensine, creates multiple HIV (2G12) epitopes on the surface of previously non-antigenic self proteins and cells, including HIV gp120. This formally demonstrates the structural basis for self/non-self discrimination between viral and host glycans, by a neutralising antibody. Moreover, this study provides an alternative protein engineering approach to the design of a carbohydrate vaccine for HIV-1 by chemical synthesis.  相似文献   

11.
Expression of surface immunoglobulin appears critical for the growth and survival of B-cell lymphomas. In follicular lymphoma, we found previously that the Ig variable (V) regions in the B-cell receptor express a strikingly high incidence of N-glycosylation sequons, NX(S/T). These potential glycosylation sites are introduced by somatic mutation and are lymphoma-specific, pointing to their involvement in tumor pathogenesis. Analysis of the V region sugars from lymphoma-derived IgG/IgM reveals that they are mostly oligomannose and, remarkably, are located in the antigen-binding site, possibly precluding conventional antigen binding. The Fc region contains complex glycans, confirming that the normal glycan processing pathway is intact. Binding studies indicate that the oligomannose glycans occupying the V regions are accessible to mannose-binding lectin. These findings suggest a potential contribution to lymphoma pathogenesis involving antigen-independent interaction of surface immunoglobulin of the B-cell receptor with mannose-binding molecules of innate immunity in the germinal center.  相似文献   

12.
Neutralizing antibodies may have critical importance in immunity against human immunodeficiency virus type 1 (HIV-1) infection. However, the amount of protective antibody needed at mucosal surfaces has not been fully established. Here, we evaluated systemic and mucosal pharmacokinetics (PK) and pharmacodynamics (PD) of 2F5 IgG and 2F5 Fab fragments with respect to protection against vaginal challenge with simian-human immunodeficiency virus-BaL in macaques. Antibody assessment demonstrated that 2F5 IgG was more potent than polymeric forms (IgM and IgA) across a range of cellular and tissue models. Vaginal challenge studies demonstrated a dose-dependent protection for 2F5 IgG and no protection with 2F5 Fab despite higher vaginal Fab levels at the time of challenge. Animals receiving 50 or 25 mg/kg of body weight 2F5 IgG were completely protected, while 3/5 animals receiving 5 mg/kg were protected. In the control animals, infection was established by a minimum of 1 to 4 transmitted/founder (T/F) variants, similar to natural human infection by this mucosal route; in the two infected animals that had received 5 mg 2F5 IgG, infection was established by a single T/F variant. Serum levels of 2F5 IgG were more predictive of sterilizing protection than measured vaginal levels. Fc-mediated antiviral activity did not appear to influence infection of primary target cells in cervical explants. However, PK studies highlighted the importance of the Fc portion in tissue biodistribution. Data presented in this study may be important in modeling serum levels of neutralizing antibodies that need to be achieved by either vaccination or passive infusion to prevent mucosal acquisition of HIV-1 infection in humans.  相似文献   

13.
IgG carries bi-antennary N-linked glycans which differ in degrees of galactosylation, core fucosylation and bisecting N-acetyl glucosamine. The majority of these are non-sialyated closely related neutral structures which can be resolved by HPLC analysis, but which are difficult to separate in techniques such as fluorophore-coupled carbohydrate electrophoresis. Derivatisation with the singly charged fluorophore, 2-amino benzoic acid and separation in gels with a 30% monomer content in tris/glycine buffer enabled separation of neutral glycans. In particular, agalactosyl glycans with either a core fucose substitution or bisecting N-acetyl galactosamine could be resolved. Good separation of mono- and di-galactosylated glycans was also achieved with this system. It was shown that IgG can be separated from serum by size-exclusion and anion exchange chromatography with minimal contamination, with complete glycan release accomplished by the enzyme peptide-N-glycosidase F (F. meningosepticum). This method of resolving IgG glycans could be used to monitor patients in which glycosylation changes may have a diagnostic value, as in rheumatoid arthritis. It could also be used to monitor recombinant IgG glycosylation where routine screening is required in the biotechnology industry.  相似文献   

14.
cDNA libraries in lambda phage were generated from the murine hybridoma secreting mAb-15C5, a monoclonal antibody directed against fragment-D dimer of crosslinked human fibrin [Holvoet et al. (1989) Thromb. Haemostasis 61, 307-313], and clones encoding fragments of the heavy (gamma 1) and the light (kappa) chain were isolated. The kappa-chain cDNA was reconstructed from two overlapping clones encoding 20 amino acids of signal sequence and the 214 amino acids of the mature protein chain. The gamma 1-chain cDNA was reconstructed from the mAb-15C5 kappa-chain signal sequence, the mAb-15C5 gamma 1 variable-domain coding sequence and murine gamma 1-gene and gamma 1-chain cDNA fragments encoding the constant domains. These cDNAs were expressed in Chinese hamster ovary cells, selected cell lines were scaled up in roller bottle culture, and recombinant mAb-15C5 was purified from the conditioned medium by chromatography on Zn-chelate - Sepharose, protein-A - Sepharose and insolubilized fragment-D dimer, with a yield of 50 micrograms/l and a recovery of 20%. SDS-gel electrophoresis without reduction revealed a homogeneous band, and after reduction a light-chain band with identical and a heavy-chained band with a somewhat slower mobility than that of the natural mAb-15C5. Competitive binding revealed a comparable affinity of natural and recombinant mAb-15C5 for fibrin fragment-D dimer. Thus recombinant mAb-15C5, obtained by co-expression of the reconstructed cDNAs of the kappa and gamma 1 chain in Chinese hamster ovary cells, has very similar properties to natural mAb-15C5. These recombinant mAb-15C5 cDNAs may be useful for the construction of a humanized monoclonal antibody for thrombus imaging, and for targeting of thrombolytic agents to fibrin.  相似文献   

15.
By two independent techniques for separating human opsonic IgG for group A type 6 streptococci into fast- and slow-migrating fractions, it was found that the opsonic activity was localized within the basic charge population. This charge dependence was found to be a characteristic of the IgG isolated from three individuals. When the fast- and slow-migrating IgG fractions were tested for their ability to bind to purified M6 protein, antibodies in both opsonic and nonopsonic populations exhibited binding activity, with the majority being located within the opsonic IgG in two of the three individuals; the third displayed greater binding in the nonopsonic population. The functional difference observed in the antibody populations to this M antigen may be a reflection of the net charge within the area of the antibody binding site, which suggests that the opsonic antibodies need to bind to acidic residues along the outer surface of the fibrillar M protein molecule. F(ab')2 fragments prepared from both human and rabbit type 6 opsonic IgG were still able to bind to the M6 molecule but were unable to mediate opsonization of type 6 streptococci. However, the F(ab')2 fragments had the capacity to enhance or amplify the opsonic activity of low concentrations of opsonic IgG molecules. The results suggest that the M protein molecule may function as an active inhibitor of phagocytosis and that F(ab')2 fragments from opsonic IgG have the capacity to neutralize the "active" determinants on the molecule, thus allowing lower concentrations of IgG with functional Fc receptors to mediate phagocytosis.  相似文献   

16.
The monoglucosylated oligomannose N-linked oligosaccharide (Glc(1)Man(9)GlcNAc(2)) is a retention signal for the calnexin-calreticulin quality control pathway in the endoplasmic reticulum. We report here the presence of such monoglucosylated N-glycans on the human complement serum glycoprotein C3. This finding represents the first report of monoglucosylated glycans on a human serum glycoprotein from non-diseased individuals. The presence of the glucose moiety in 5% of the human C3 glycoprotein suggests that this glycosylation site is sequestered within the protein and is consistent with previous studies identifying a cryptic conglutinin binding site on C3 that becomes exposed upon its conversion to iC3b.  相似文献   

17.
Rheumatoid arthritis (RA) is a chronic autoimmune disease which affects females more than males with a presence of autoantibodies. Immunoglobulin G (IgG) produced by adaptive arm has 2 functional domains, Fc and Fab. The Fc domain binds Fc gamma receptors and C1q proteins of the innate arm. Therefore, the IgG Fc domain serves as a bridge between the innate and adaptive arms and is regulated by an evolutionarily conserved N-glycosylation with variable structures. These glycans are classified as agalactosylated G0, monogalactosylated G1, and digalactosylated G2, which are further modified by core-fucosylation (F) and bisecting N-acetylglucosamine (B) moieties such as G0F and G0FB. Interestingly, proinflammatory G0F is shown to be regulated by estrogen in vivo. Here, it is hypothesized that the regulation of G0F by estrogen contributes to sex dichotomy in RA by setting up the level of IgG-dependent inflammation and therefore, RA disease activity (Das28-CRP3). To investigate this hypothesis, IgG glycosylation was characterized in serum samples from active RA patients (n = 232) and healthy controls (n = 232) by serum N-glycan analysis using the high performance liquid chromatography. According to the results, the IgG Fc glycan phenotype originates predominantly from the structure of G0F, and both G0F and G0FB correlate with Das28-CRP3 in females, but not in males. In conclusion, IgG G0F-dependent inflammation differs in males and females, and these differences point to the differential regulation of inflammation by sex hormone estrogen via IgG glycosylation.  相似文献   

18.
The glycan shield of human immunodeficiency virus type 1 (HIV-1) gp120 contributes to viral evasion from humoral immune responses. However, the shield is recognized by the HIV-1 broadly neutralizing antibody (Ab), 2G12, at a relatively conserved cluster of oligomannose glycans. The discovery of 2G12 raises the possibility that a carbohydrate immunogen may be developed that could elicit 2G12-like neutralizing Abs and contribute to an AIDS vaccine. We have previously dissected the fine specificity of 2G12 and reported that the synthetic tetramannoside (Man(4)) that corresponds to the D1 arm of Man(9)GlcNAc(2) inhibits 2G12 binding to gp120 as efficiently as Man(9)GlcNAc(2) itself, indicating the potential use of Man(4) as a building block for creating immunogens. Here, we describe the development of neoglycoconjugates displaying variable copy numbers of Man(4) on bovine serum albumin (BSA) molecules by conjugation to Lys residues. The increased valency enhances the apparent affinity of 2G12 for Man(4) up to a limit which is achieved at approximately 10 copies per BSA molecule, beyond which no further enhancement is observed. Immunization of rabbits with BSA-(Man(4))(14) elicits significant serum Ab titers to Man(4). However, these Abs are unable to bind gp120. Further analysis reveals that the elicited Abs bind a variety of unbranched and, to a lesser extent, branched Man(9) derivatives but not natural N-linked oligomannose containing the chitobiose core. These results suggest that Abs can be readily elicited against the D1 arm; however, potential differences in the presentation of Man(4) on neoglycoconjugates, compared to glycoproteins, poses challenges for eliciting anti-mannose Abs capable of cross-reacting with gp120 and HIV-1.  相似文献   

19.
We recently reported that N-glycosylation changes during human aging. To further investigate the molecular basis determining these alterations, the aging process in mice was studied. N-glycan profiling of mouse serum glycoproteins in different age groups of healthy C57BL/6 mice showed substantial age-related changes in three major N-glycan structures: under-galactosylated biantennary (NGA2F), biantennary (NA2), and core α-1,6-fucosylated -β-galactosylated biantennary structures (NA2F). Mice defective in klotho gene expression (kl/kl), which have a shortened lifespan, displayed a similar but accelerated trend. Interestingly, the opposite trend was observed in slow-aging Snell Dwarf mice (dw/dw) and in mice fed a calorically restricted diet. We also discovered that increased expression and activity of α-1,6-fucosyltransferase (FUT8) in the liver are strongly linked to the age-related changes in glycosylation and that this increased FUT8 and fucosylation influence IGF-1 signaling. These data demonstrate that the glycosylation machinery in liver cells is significantly affected during aging and that age-related increased FUT8 activity could influence the aging process by altering the sensitivity of the IGF-1R signaling pathway.  相似文献   

20.
Using the avidin-biotinyl glycan system reported previously (Shao, M.-C., and Wold, F. (1987) J. Biol. Chem. 267, 2968-2972), we have compared the processing efficiency of oviduct enzymes acting on different glycan-(biotinyl)Asn and glycan-(6-biotinamidohexanoyl)Asn derivatives when they are free and bound to avidin. The glycans were selected to permit exploration of the individual processing steps, and the two different groups of derivatives were used to assess both the close (biotinyl) and more distal (biotinamidohexanoyl) display of the glycan relative to the avidin surface. The direct comparison of the free and avidin-bound glycans demonstrated that mannosidase I is strongly inhibited by avidin in both the close and distal complexes, whereas GlcNAc transferase I and mannosidase II are strongly inhibited only in the close complex. GlcNAc transferases III, IV, and V, which could only be assessed individually by indirect means using different substrates, did not appear to be affected in any major way by the protein matrix; the data suggest that transferase III is inhibited only to a minor extent in the close complex. Gal transferase activity showed a minor effect of the avidin matrix for both complexes in the hybrid processing pathways. The most significant consequence of the avidin effect on Gal transferase was the apparent abolishment of the incorporation of a 2nd Gal residue in the two avidin complexes. This survey of the protein matrix effects on glycan processing by oviduct enzymes appears to provide reasonable clues to the origin of the very different glycan structures observed in oviduct-processed glycoproteins. Thus, ovalbumin and avidin itself, containing a mixture of oligomannose and hybrid glycans at their single glycosylation sites, may well present they glycans to the processing enzymes in a display very similar to that of the avidin close complex observed here. The inhibition of mannosidase I and GlcNAc transferase I lead to preservation of oligomannose structures, whereas the strong inhibition of mannosidase II favors the incorporation of the bisecting GlcNAc by GlcNAc transferase III to yield hybrid structures as the most processed products. Ovomucoid, which contains multiantennary complex structures at all glycosylation sites, may on the other hand display its glycans, unencumbered by the protein surface, in conformations similar to either the free glycans or the distal complexes observed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号