首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fc gamma RIIB are IgG receptors that inhibit immunoreceptor tyrosine-based activation motif (ITAM)-dependent cell activation. Inhibition depends on an immunoreceptor tyrosine-based inhibition motif (ITIM) that is phosphorylated upon Fc gamma RIIB coaggregation with ITAM-bearing receptors and recruits SH2 domain-containing phosphatases. Agarose bead-coated phosphorylated ITIM peptides (pITIMs) bind in vitro the single-SH2 inositol 5-phosphatases (SHIP1 and SHIP2) and the two-SH2 protein tyrosine phosphatases (SHP-1 and SHP-2). Phosphorylated Fc gamma RIIB, however, recruit selectively SHIP1/2 in vivo. We aimed here at explaining this discordance. We found that beads coated with low amounts of pITIM bound in vitro SHIP1, but not SHP-1, i.e. behaved as phosphorylated Fc gamma RIIB in vivo. The reason is that SHP-1 requires its two SH2 domains to bind on adjacent pITIMs. Consequently, the binding of SHP-1, but not of SHIP1, increased with pITIM density on beads. When trying to increase Fc gamma RIIB phosphorylation in B cells and mast cells, we found that concentrations of ligands optimal for Fc gamma RIIB phosphorylation failed to induce SHP-1 recruitment. SHP-1 was, however, recruited by Fc gamma RIIB when hyperphosphorylated following cell treatment with pervanadate. Our data suggest that Fc gamma RIIB phosphorylation may not be sufficient in vivo to enable the recruitment of SHP-1 but that (pathological?) conditions that would hyperphosphorylate Fc gamma RIIB might enable SHP-1 recruitment.  相似文献   

2.
FcgammaRIIB are single-chain low affinity receptors for IgG that negatively regulate immunoreceptor tyrosine-based activation motif-dependent cell activation. They bear one immunoreceptor tyrosine-based inhibition motif (ITIM) that becomes tyrosyl-phosphorylated upon coaggregation of FcgammaRIIB with immunoreceptor tyrosine-based activation motif-bearing receptors and that recruits SH2 domain-containing inositol 5-phosphatases (SHIPs) in vivo. Synthetic FcgammaRIIB ITIM phosphopeptides, however, also bind SH2 domain-containing protein-tyrosine phosphatases (SHPs) in vitro. To identify SHIP-binding sites, we exchanged residues between the FcgammaRIIB ITIM and the N-terminal ITIM of a killer cell Ig-like receptor that does not bind SHIPs. Loss of function and gain of function substitutions identified the Y+2 leucine, in the FcgammaRIIB ITIM, as determining the binding of both SHIP1 and SHIP2, but not the binding of SHP-1 or SHP-2. Conversely, the Y-2 isoleucine that determines the in vitro binding of SHP-1 and SHP-2 affected neither the binding nor the recruitment of SHIP1 or SHIP2. One hydrophobic residue, in the ITIM of FcgammaRIIB therefore determines the affinity for SHIPs. This residue is symmetrical to the hydrophobic residue that determines the affinity of all ITIMs for SHPs. It defines a SHIP-binding site, distinct from a SHP-binding site, that enables FcgammaRIIB to recruit SHIP1 and SHIP2 and that is preferentially used in vivo.  相似文献   

3.
The immunoreceptor tyrosine-based inhibitory motif (ITIM) of human type IIb Fcgamma receptor (FcgammaRIIb) is phosphorylated on its tyrosine upon co-clustering with the B cell receptor (BCR). The phosphorylated ITIM (p-ITIM) binds to the SH2 domains of polyphosphoinositol 5-phosphatase (SHIP) and the tyrosine phosphatase, SHP-2. We investigated the involvement of the molecular complex composed of the phosphorylated SHIP and FcgammaRIIb in the activation of SHP-2. As a model compound, we synthesized a bisphosphopeptide, combining the sequences of p-ITIM and the N-terminal tyrosine phosphorylated motif of SHIP with a flexible spacer. This compound bound to the recombinant SH2 domains of SHP-2 with high affinity and activated the phosphatase in an in vitro assay. These data suggest that the phosphorylated FcgammaRII-SHIP complexes formed in the intact cells may also activate SHP-2. Grb2-associated binder 1 (Gab1) is a multisite docking protein, which becomes tyrosine-phosphorylated in response to various types of signaling, including BCR. In turn it binds to the SH2 domains of SHP-2, SHIP and the p85 subunit of phosphatidyl inositol 3-kinase (PtdIns3-K) and may regulate their activity. Gab1 is a potential substrate of SHP-2, thus its binding to FcgammaRIIb may modify the Gab1-bound signaling complex. We show here that Gab1 is part of the multiprotein complex assembled by FcgammaRIIb upon its co-clustering with BCR. Gab1 may recruit SH2 domain-containing molecules to the phosphorylated FcgammaRIIb. SHP-2, activated upon the binding to FcgammaRIIb-SHIP complex, partially dephosphorylates Gab1, resulting in the release of PtdIns3-K and ultimately in the inhibition of downstream activation pathways in BCR/FcgammaRIIb co-aggregated cells.  相似文献   

4.
Platelet-endothelial cell adhesion molecule-1 (PECAM-1) is a cell adhesion molecule with a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) that, when phosphorylated, binds Src homology 2 domain-containing protein-tyrosine phosphatase (SHP-2). PECAM-1 is expressed at endothelial cell junctions where exposure to inflammatory intermediates may result in post-translational amino acid modifications that affect protein structure and function. Reactive nitrogen species (RNS), which are produced at sites of inflammation, nitrate tyrosine residues, and several proteins modified by tyrosine nitration have been found in diseased tissue. We show here that the RNS, peroxynitrite, induced nitration of both full-length cellular PECAM-1 and a purified recombinant PECAM-1 cytoplasmic domain. Mass spectrometric analysis of tryptic fragments revealed quantitative nitration of ITIM tyrosine 686. A synthetic peptide containing 3-nitrotyrosine at position 686 could not be phosphorylated nor bind SHP-2. These data suggest that ITIM tyrosine nitration may represent a mechanism for modulating phosphotyrosine-dependent signal transduction pathways.  相似文献   

5.
We describe the molecular cloning and characterization of S2V, a novel sialic acid binding immunoglobulin-like lectin. The cDNA of S2V encodes a type 1 transmembrane protein with four extracellular immunoglobulin-like (Ig-like) domains and a cytoplasmic tail bearing a typical immunoreceptor tyrosine-based inhibitory motif (ITIM) and an ITIM-like motif. A unique feature of S2V is the presence of two V-set Ig-like domains responsible for the binding to sialic acid, whereas all other known siglecs possess only one. S2V is predominantly expressed in macrophage. In vivo S2V was tyrosine-phosphorylated when co-expressed with exogenous c-Src kinase. Upon tyrosine phosphorylation, S2V recruits both Src homology 2 (SH2) domain-containing protein-tyrosine phosphatases SHP-1 and SHP-2, two important inhibitory regulators of immunoreceptor signal transduction. These findings suggest that S2V is involved in the negative regulation of the signaling in macrophage by functioning as an inhibitory receptor. When expressed in COS-7 cells, S2V was able to mediate sialic acid-dependent binding to human red blood cells, suggesting that S2V may function through cell-cell interaction.  相似文献   

6.
Recently, we have described a novel protein-protein interaction between the G-protein coupled bradykinin B2 receptor and tyrosine phosphatase SHP-2 via an immunoreceptor tyrosine-based inhibition motif (ITIM) sequence located in the C-terminal part of the B2 receptor and the Src homology (SH2) domains of SHP-2. Here we show that phospholipase C (PLC)gamma1, another SH2 domain containing protein, can also interact with this ITIM sequence. Using surface plasmon resonance analysis, we observed that PLCgamma1 interacted with a peptide containing the phosphorylated form of the bradykinin B2 receptor ITIM sequence. In CHO cells expressing the wild-type B2 receptor, bradykinin-induced transient recruitment and activation of PLCgamma1. Interestingly, this interaction was only observed in quiescent and not in proliferating cells. Mutation of the key ITIM residue abolished this interaction with and activation of PLCgamma1. Finally we also identified bradykinin-induced PLCgamma1 recruitment and activation in primary culture renal mesangial cells.  相似文献   

7.
FcgammaRIIB are low-affinity receptors for IgG that contain an immunoreceptor tyrosine-based inhibition motif (ITIM) and inhibit immunoreceptor tyrosine-based activation motif (ITAM)-dependent cell activation. When coaggregated with ITAM-bearing receptors, FcgammaRIIB become tyrosyl-phosphorylated and recruit the Src homology 2 (SH2) domain-containing inositol 5'-phosphatases SHIP1 and SHIP2, which mediate inhibition. The FcgammaRIIB ITIM was proposed to be necessary and sufficient for recruiting SHIP1/2. We show here that a second tyrosine-containing motif in the intracytoplasmic domain of FcgammaRIIB is required for SHIP1/2 to be coprecipitated with the receptor. This motif functions as a docking site for the SH2 domain-containing adapters Grb2 and Grap. These adapters interact via their C-terminal SH3 domain with SHIP1/2 to form a stable receptor-phosphatase-adapter trimolecular complex. Both Grb2 and Grap are required for an optimal coprecipitation of SHIP with FcgammaRIIB, but one adapter is sufficient for the phosphatase to coprecipitate in a detectable manner with the receptors. In addition to facilitating the recruitment of SHIPs, the second tyrosine-based motif may confer upon FcgammaRIIB the properties of scaffold proteins capable of altering the composition and stability of the signaling complexes generated following receptor engagement.  相似文献   

8.
The low-affinity receptor for IgG, FcgammaRIIB, functions broadly in the immune system, blocking mast cell degranulation, dampening the humoral immune response, and reducing the risk of autoimmunity. Previous studies concluded that inhibitory signal transduction by FcgammaRIIB is mediated solely by its immunoreceptor tyrosine-based inhibition motif (ITIM) that, when phosphorylated, recruits the SH2-containing inositol 5'- phosphatase SHIP and the SH2-containing tyrosine phosphatases SHP-1 and SHP-2. The mutational analysis reported here reveals that the receptor's C-terminal 16 residues are also required for detectable FcgammaRIIB association with SHIP in vivo and for FcgammaRIIB-mediated phosphatidylinositol 3-kinase hydrolysis by SHIP. Although the ITIM appears to contain all the structural information required for receptor-mediated tyrosine phosphorylation of SHIP, phosphorylation is enhanced when the C-terminal sequence is present. Additionally, FcgammaRIIB-mediated dephosphorylation of CD19 is independent of the cytoplasmic tail distal from residue 237, including the ITIM. Finally, the findings indicate that tyrosines 290, 309, and 326 are all sites of significant FcgammaRIIB1 phosphorylation following coaggregation with B cell Ag receptor. Thus, we conclude that multiple sites in FcgammaRIIB contribute uniquely to transduction of FcgammaRIIB-mediated inhibitory signals.  相似文献   

9.
Coaggregation of Fc gamma RIIB1 with B cell Ag receptors (BCR) leads to inhibition of BCR-mediated signaling via recruitment of Src homology domain 2 (SH2)-containing phosphatases. In vitro peptide binding experiments using phosphotyrosine-containing sequences derived from the immunoreceptor tyrosine-based inhibitory motif (ITIM) known to mediate Fc gamma RIIB1 effects suggest that the receptor uses SH2-containing inositol phosphatase (SHIP) and SH2-containing phosphotyrosine phosphatase (SHP)-1, as well as SHP-2 as effectors. In contrast, coimmunoprecipitation studies of receptor-effector associations suggest that the predominant Fc gamma RIIB1 effector protein is SHIP. However, biologically significant interactions may be lost in such studies if reactants' dissociation rates (Kd) are high. Thus, it is unclear to what extent these assays reflect the relative recruitment of SHIP, SHP-1, and SHP-2 to the receptor in vivo. As an alternative approach to this question, we have studied the effects of ectopically expressed SHIP, SHP-1, or SHP-2 SH2-containing decoy proteins on Fc gamma RIIB1 signaling. Results demonstrate the SHIP is the predominant intracellular ligand for the phosphorylated Fc gamma RIIB1 ITIM, although the SHP-2 decoy exhibits some ability to bind Fc gamma RIIB1 and block Fc receptor function. The SHIP SH2, while not affecting Fc gamma RIIB1 tyrosyl phosphorylation, blocks receptor-mediated recruitment of SHIP, SHIP phosphorylation, recruitment of p52 Shc, phosphatidylinositol 3,4,5-trisphosphate hydrolysis, inhibition of mitogen-activated protein kinase activation, and, albeit more modestly, Fc gamma RIIB1 inhibition of Ca2+ mobilization. Taken together, results implicate ITIM interactions with SHIP as a major mechanism of Fc gamma RIIB1-mediated inhibitory signaling.  相似文献   

10.
Clustering of the mast cell function-associated antigen by its specific monoclonal antibody (G63) inhibits the FcepsilonRI-mediated secretory response. The cytosolic tail of the mast cell function-associated antigen contains a SIYSTL stretch, a potential immunoreceptor tyrosine-based inhibition motif. To investigate the possible functional role of this sequence, as well as identify potential intracellular proteins that interact with it, peptides corresponding to residues 4-12 of the mast cell function-associated antigen's N-terminal cytoplasmic domain, containing the above motif, were synthesized and used in affinity chromatography of mast cell lysates. Both tyrosyl phosphorylated and thiophosphorylated mast cell function-associated antigen peptides bound the src homology domain 2 (SH2)-containing tyrosine phosphatases-1 (SHP-1), -2 (SHP-2) and inositol 5'-phosphatase (SHIP), though with different efficiencies. Neither the nonphosphorylated peptide nor its tyrosyl phosphorylated reversed sequence peptide bound any of these phosphatases. Point mutation analysis of mast cell function-associated antigen pITIM binding requirements demonstrated that for SHP-2 association the amino acid residue at position Y-2 is not restricted to the hydrophobic isoleucine or valine. Glycine and other amino acids with hydrophilic residues, such as serine and threonine, at this position also maintain this binding capacity, whereas alanine and acidic residues abolish it. In contrast, SHP-1 binding was maintained only when serine was substituted by valine, suggesting that the Y-2 position provides selectivity for peptide binding to SH2 domains of SHP-1 and SHP-2. These results were corroborated by surface plasmon resonance measurements of the interaction between tyrosyl phosphorylated mast cell function-associated antigen peptide and recombinant soluble SH2 domains of SHP-1, SHP-2 and SHIP, suggesting that the associations observed in the cell lysates may be direct. Taken together these results clearly indicate that the SIYSTL motif present in mast cell function-associated antigen's cytosolic tail exhibits characteristic features of an immunoreceptor tyrosine-based inhibition motif, suggesting it is a new member of the growing diverse family of immunoreceptor tyrosine-based inhibition motif-containing receptors.  相似文献   

11.
Immune responses to pathogens are regulated by immune receptors containing either an immunoreceptor tyrosine-based activation motif (ITAM) or an immunoreceptor tyrosine-based inhibitory motif (ITIM). The important diarrheal pathogen enteropathogenic Escherichia coli (EPEC) require delivery and insertion of the bacterial translocated intimin receptor (Tir) into the host plasma membrane for pedestal formation. The C-terminal region of Tir, encompassing Y483 and Y511, shares sequence similarity with cellular ITIMs. Here, we show that EPEC Tir suppresses the production of inflammatory cytokines by recruitment of SHP-2 and subsequent deubiquitination of TRAF6 in an ITIM dependent manner. Our findings revealed a novel mechanism by which the EPEC utilize its ITIM motifs to suppress and evade the host innate immune response, which could lead to the development of novel therapeutics to prevent bacterial infection.  相似文献   

12.
Killer cell inhibitory receptors (KIRs) inhibit NK and T cell cytotoxicity when recognizing MHC class I molecules on target cells. They possess two tandem intracytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs) that, when phosphorylated, each bind to the two Src homology 2 domain-bearing protein tyrosine phosphatases SHP-1 and SHP-2 in vitro. Using chimeric receptors having an intact intracytoplasmic KIR domain bearing both ITIMs (N + C-KIR), a deleted domain containing the N-terminal ITIM only (N-KIR), or a deleted domain containing the C-terminal ITIM only (C-KIR), we examined the respective contributions of the two ITIMs in the inhibition of cell activation in two experimental models (a rat mast cell and a mouse B cell line) that have been widely used to analyze KIR functions. We found that the two KIR ITIMs play distinct roles. When coaggregated with immunoreceptor tyrosine-based activation motif-bearing receptors such as high-affinity IgE receptors or B cell receptors, the N + C-KIR and the N-KIR chimeras, but not the C-KIR chimera, inhibited mast cell and B cell activation, became tyrosyl-phosphorylated, and recruited phosphatases in vivo. The N + C-KIR chimera recruited SHP-1 as expected, but also SHP-2. Surprisingly, the N-KIR chimera failed to recruit SHP-1; however, it did recruit SHP-2. Consequently, the N-terminal ITIM is sufficient to recruit SHP-2 and to inhibit cell activation, whereas the N-terminal and the C-terminal ITIMs are both necessary to recruit SHP-1. The two KIR ITIMs, therefore, are neither mandatory for inhibition nor redundant. Rather than simply amplifying inhibitory signals, they differentially contribute to the recruitment of distinct phosphatases that may cooperate to inhibit cell activation.  相似文献   

13.
Engagement of the immunoinhibitory receptor, programmed death-1 (PD-1) attenuates T-cell receptor (TCR)-mediated activation of IL-2 production and T-cell proliferation. Here, we demonstrate that PD-1 modulation of T-cell function involves inhibition of TCR-mediated phosphorylation of ZAP70 and association with CD3zeta. In addition, PD-1 signaling attenuates PKCtheta activation loop phosphorylation in a cognate TCR signal. PKCtheta has been shown to be required for T-cell IL-2 production. A phosphorylated PD-1 peptide, corresponding to the C-terminal immunoreceptor tyrosine-switch motif (ITSM), acts as a docking site in vitro for both SHP-2 and SHP-1, while the phosphorylated peptide containing the N-terminal PD-1 immunoreceptor tyrosine based inhibitory motif (ITIM) associates only with SHP-2.  相似文献   

14.
15.
B and T lymphocytes express receptors providing positive and negative co-stimulatory signals. We recently identified a novel co-stimulatory molecule, B and T lymphocyte attenuator (BTLA), which exerts inhibitory effects on B and T lymphocytes. The cytoplasmic domain of murine and human BTLA share three conserved tyrosine-based signaling motifs, a Grb-2 recognition consensus, and two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Phosphorylation of the cytoplasmic domain of BTLA induced the association with the protein tyrosine phosphatases SHP-1 and SHP-2. Association of SHP-1 and SHP-2 to other receptors can involve recruitment to either a single receptor ITIM or to two receptor ITIMs. Here, we analyzed the requirements of BTLA interaction with SHP-1 and SHP-2 in a series of murine and human BTLA mutants. For human BTLA, mutations of either Y257 or Y282, but not Y226, abrogated association with both SHP-1 and SHP-2. For murine BTLA, mutation of either Y274 or Y299, but not Y245, also abrogated association with both SHP-1 and SHP-2. These results indicate that for both murine and human BTLA, association with SHP-1 or SHP-2 requires both of conserved ITIM motifs and does not involve the conserved Grb-2 consensus. Thus, similar to the bisphosphoryl tyrosine-based activation motif (BTAM) by which the Grb-2 associated binder (Gab1), PDGF receptor, and PECAM-1 recruit SHP-2, BTLA also relies on dual ITIMs for its association with the phosphatases SHP-1 and SHP-2.  相似文献   

16.
17.
CD155 (poliovirus receptor) localizes in cell-matrix adhesions and cell-cell junctions, but its role in the regulation of cell adhesion and cell motility has not been investigated. We identified a conserved immunoreceptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic domain of human CD155alpha. The ITIM was tyrosine-phosphorylated upon binding of anti-CD155 monoclonal antibody D171, poliovirus, and DNAM-1 (CD226) to human CD155alpha, and recruited SH2-domain-containing tyrosine phosphatase-2 (SHP-2). After CD155alpha stimulation with its ligands, cell adhesion was inhibited and cell motility was enhanced, effects that were associated with the phosphorylation of ITIM by Src kinases and accompanied by dephosphorylation of focal adhesion kinase and paxillin. These effects were abolished by introducing a point-mutation in Y398F into the ITIM of CD155alpha and by coexpression of a dominant negative SHP-2 mutant with CD155alpha. These results suggest that CD155alpha plays a role in the regulation of cell adhesion and cell motility.  相似文献   

18.
Siglec-7 (p75/AIRM1) is an inhibitory receptor on human natural killer cells (NK cells) and monocytes. The cytoplasmic domain of Siglec-7 contains two signaling motifs: a membrane-proximal immunoreceptor tyrosine-based inhibitory motif (ITIM) (Ile435-Gln-Tyr-Ala-Pro-Leu440) and a membrane-distal motif (Asn458-Glu-Tyr-Ser-Glu-Ile463). We report here that, upon pervanadate (PV) treatment, Siglec-7 recruited the protein tyrosine phosphatases Src homology-2 (SH2) domain-containing protein-tyrosine phosphatase-1 (SHP-1) and SHP-2 less efficiently than did other inhibitory receptors such as Siglec-9 and leukocyte-associated Ig-like receptor (LAIR-1). Alignment of the amino acid sequences of the two Siglecs revealed only three amino acids difference in these motifs. To identify the amino acid(s) critical to recruitment efficiency, we prepared a series of Siglec-7-based mutants in which each of the three amino acids were replaced with the corresponding one of Siglec-9 (I435L, P439S, and N458T mutants). P439S and N458T mutants showed pronounced enhancement of SHP recruitment, but I435L mutant had little effect. A double mutant (P439S, N458T) or triple mutant (I435L, P439S, N458T) recruited SHPs as much as did Siglec-9, indicating that Pro439 in the proximal motif and Asn458 in the distal motif of Siglec-7 attenuate its ability to recruit phosphatases. These amino acids appeared to affect not only phosphatase recruitment but also the subsequent attenuation of Syk phosphorylation.  相似文献   

19.
Killer cell Ig-like receptors (KIR) are MHC class I-binding immunoreceptors that can suppress activation of human NK cells through recruitment of the Src homology 2-containing protein tyrosine phosphatase-1 (SHP-1) to two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic domains. KIR2DL4 (2DL4; CD158d) is a structurally distinct member of the KIR family, which is expressed on most, if not all, human NK cells. 2DL4 contains only one ITIM in its cytoplasmic domain and an arginine in its transmembrane region, suggesting both inhibitory and activating functions. While 2DL4 can activate IFN-gamma production, dependent upon the transmembrane arginine, the function of the single ITIM of 2DL4 remains unknown. In this study, tandem ITIMs of KIR3DL1 (3DL1) and the single ITIM of 2DL4 were directly compared in functional and biochemical assays. Using a retroviral transduction method, we show in human NK cell lines that 1) the single ITIM of 2DL4 efficiently inhibits natural cytotoxicity responses; 2) the phosphorylated single ITIM recruits SHP-2 protein tyrosine phosphatase, but not SHP-1 in NK cells; 3) expression of dominant-negative SHP-1 does not block the ability of 2DL4 to inhibit natural cytotoxicity; 4) surprisingly, mutation of the tyrosine within the single ITIM does not completely abolish inhibitory function; and 5) this correlates with weak SHP-2 binding to the mutant ITIM of 2DL4 in NK cells and a corresponding nonphosphorylated ITIM peptide in vitro. These results reveal new aspects of the KIR-inhibitory pathway in human NK cells, which are SHP-1 and phosphotyrosine independent.  相似文献   

20.
Platelet-endothelial cell adhesion molecule-1 (PECAM-1) is a 130-kDa transmembrane glycoprotein expressed by endothelial cells, platelets, monocytes, neutrophils, and certain T cell subsets. The PECAM-1 extracellular domain has six Ig-homology domains that share sequence similarity with cellular adhesion molecules. The PECAM-1 cytoplasmic domain contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) that, when appropriately engaged, becomes phosphorylated on tyrosine residues, creating docking sites for nontransmembrane, Src homology 2 domain-bearing protein tyrosine phosphatase (SHP)-1 and SHP-2. The purpose of the present study was to determine whether PECAM-1 inhibits protein tyrosine kinase (PTK)-dependent signal transduction mediated by the immunoreceptor tyrosine-based activation motif-containing TCR. Jurkat cells, which coexpress PECAM-1 and the TCR/CD3 complex, were INDO-1AM-labeled and then incubated with anti-CD3epsilon mAbs, anti-PECAM-1 mAbs, or both, and goat anti-mouse IgG was used to cross-link surface-bound mAbs. Calcium mobilization induced by CD3 cross-linking was found to be attenuated by coligation of PECAM-1 in a dose-dependent manner. PECAM-1-mediated inhibition of TCR signaling was attributable, at least in part, to inhibition of release of calcium from intracellular stores. These data provide evidence that PECAM-1 can dampen signals transduced by ITAM-containing receptors and support inclusion of PECAM-1 within the family of ITIM-containing inhibitors of PTK-dependent signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号