首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The spread of Aedes albopictus, a vector for re-emergent arbovirus diseases like chikungunya and dengue, points up the need for better control strategies and new tools to evaluate transmission risk. Human antibody (Ab) responses to mosquito salivary proteins could represent a reliable biomarker for evaluating human-vector contact and the efficacy of control programs.

Methodology/Principal Findings

We used ELISA tests to evaluate specific immunoglobulin G (IgG) responses to salivary gland extracts (SGE) in adults exposed to Aedes albopictus in Reunion Island. The percentage of immune responders (88%) and levels of anti-SGE IgG Abs were high in exposed individuals. At an individual level, our results indicate heterogeneity of the exposure to Aedes albopictus bites. In addition, low-level immune cross-reactivity between Aedes albopictus and Aedes aegypti SGEs was observed, mainly in the highest responders.

Conclusion/Significance

Ab responses to saliva could be used as an immuno-epidemiological tool for evaluating exposure to Aedes albopictus bites. Combined with entomological and epidemiological methods, a “salivary” biomarker of exposure to Aedes albopictus could enhance surveillance of its spread and the risk of arbovirus transmission, and could be used as a direct tool for the evaluation of Aedes albopictus control strategies.  相似文献   

2.

Background

Zika virus (ZIKV) is a little known flavivirus that caused a major outbreak in 2007, in the South-western Pacific Island of Yap. It causes dengue-like syndromes but with milder symptoms. In Africa, where it was first isolated, ZIKV is mainly transmitted by sylvatic Aedes mosquitoes. The virus has also been isolated from Ae. aegypti and it is considered to be the vector involved in the urban transmission of the virus. Transmission of the virus by an African strain of Ae. aegypti has also been demonstrated under laboratory conditions. The aim of the present study is to describe the oral susceptibility of a Singapore strain of Ae. aegypti to ZIKV, under conditions that simulate local climate.

Methodology/Principal Findings

To assess the receptivity of Singapore''s Ae. aegypti to the virus, we orally exposed a local mosquito strain to a Ugandan strain of ZIKV. Upon exposure, fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 70–75% RH. Eight mosquitoes were then sampled daily from day 1 to day 7, and subsequently on days 10 and 14 post exposure (pe). The virus titer of the midgut and salivary glands of each mosquito were determined using a tissue culture infectious dose50 (TCID50) assay. High midgut infection and salivary gland dissemination rates were observed. By day 5 after the infectious blood meal, ZIKV was found in the salivary glands of more than half of the mosquitoes tested (62%); and by day 10, all mosquitoes were potentially infective.

Conclusions/Significance

This study showed that Singapore''s urban Ae. aegypti are susceptible and are potentially capable of transmitting ZIKV. The virus could be established in Singapore should it be introduced. Nevertheless, Singapore''s current dengue control strategy is applicable to control ZIKV.  相似文献   

3.

Background and Objectives

In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities.

Methods

We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level.

Results

Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos.

Conclusion

In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats.  相似文献   

4.

Background

Aedes aegypti and Aedes albopictus are potential vectors of chikungunya virus (CHIKV). The recent CHIKV outbreaks were caused by a new variant characterized by a mutation in the E1 glycoprotein gene (E1-226V) which has favored a better transmissibility by Ae. albopictus. As Ae. albopictus tends to replace Ae. aegypti in many regions, one question remained: is Ae. albopictus as efficient as Ae. aegypti to transmit the variant E1-226V of CHIKV?

Methodology and Findings

We infected orally both species with the variant E1-226V and estimated the infection, the viral dissemination, and the transmission rate by real time RT-PCR. Additionally, we used an in vitro assay to determine the amount of virus delivered by mosquitoes in their saliva. We found that Ae. aegypti as well as Ae. albopictus ensured a high replication of the virus which underwent an efficient dissemination as detectable in the salivary glands at day 2 post-infection (pi). Infectious CHIKV particles were delivered by salivary glands from day 2 with a maximum at day 6 pi for Ae. albopictus (103.3 PFU) and day 7 pi for Ae. aegypti (102.5 PFU).

Conclusions

Ae. albopictus is slightly more efficient than Ae. aegypti to transmit the variant E1-226V of CHIKV. These results will help to design an efficient vector control to limit transmission as soon as the first human cases are diagnosed.  相似文献   

5.
6.

Background

Previous studies have demonstrated contact irritant and spatial repellent behaviors in Aedes aegypti following exposure to sublethal concentrations of chemicals. These sublethal actions are currently being evaluated in the development of a push-pull strategy for Ae. aegypti control. This study reports on mosquito escape responses after exposure to candidate chemicals for a contact irritant focused push-pull strategy using varying concentrations and focal application.

Methods

Contact irritancy (escape) behavior, knockdown and 24 hour mortality rates were quantified in populations of female Ae. aegypti under laboratory conditions and validated in the field (Thailand and Peru) using experimental huts. Evaluations were conducted using varying concentrations and treatment surface area coverage (SAC) of three pyrethroid insecticides: alphacypermethrin, lambacyhalothrin and deltamethrin.

Results

Under laboratory conditions, exposure of Ae. aegypti to alphacypermethrin using the standard field application rate (FAR) resulted in escape responses at 25% and 50% SAC that were comparable with escape responses at 100% SAC. Significant escape responses were also observed at <100% SAC using ½FAR of all test compounds. In most trials, KD and 24 hour mortality rates were higher in mosquitoes that did not escape than in those that escaped. In Thailand, field validation studies indicated an early time of exit (by four hours) and 40% increase in escape using ½FAR of alphacypermethrin at 75% SAC compared to a matched chemical-free control. In Peru, however, the maximum increase in Ae. aegypti escape from alphacypermethrin-treated huts was 11%.

Conclusions/Significance

Results presented here suggest a potential role for sublethal and focal application of contact irritant chemicals in an Ae. aegypti push-pull strategy to reduce human–vector contact inside treated homes. However, the impact of an increase in escape response on dengue virus transmission is currently unknown and will depend on rate of biting on human hosts prior to house exiting.  相似文献   

7.

Background

Heterogeneous mosquito biting results in different individuals in a population receiving an uneven number of bites. This is a feature of many vector-borne disease systems that, if understood, could guide preventative control efforts toward individuals who are expected to contribute most to pathogen transmission. We aimed to characterize factors determining biting patterns of Aedes aegypti, the principal mosquito vector of dengue virus.

Methodology/Principal Findings

Engorged female Ae. aegypti and human cheek swabs were collected from 19 houses in Iquitos, Peru. We recorded the body size, age, and sex of 275 consenting residents. Movement in and out of the house over a week (time in house) and mosquito abundance were recorded on eight separate occasions in each household over twelve months. We identified the individuals bitten by 96 engorged mosquitoes over this period by amplifying specific human microsatellite markers in mosquito blood meals and human cheek swabs. Using a multinomial model assuming a saturating relationship (power), we found that, relative to other residents of a home, an individual''s likelihood of being bitten in the home was directly proportional to time spent in their home and body surface area (p<0.05). A linear function fit the relationship equally well (ΔAIC<1).

Conclusions/Significance

Our results indicate that larger people and those who spend more time at home are more likely to receive Ae. aegypti bites in their homes than other household residents. These findings are consistent with the idea that measurable characteristics of individuals can inform predictions of the extent to which different people will be bitten. This has implications for an improved understanding of heterogeneity in different people''s contributions to pathogen transmission, and enhanced interventions that include the people and places that contribute most to pathogen amplification and spread.  相似文献   

8.

Background

Phlebotomine sand flies are blood-sucking insects that can transmit Leishmania parasites. Hosts bitten by sand flies develop an immune response against sand fly salivary antigens. Specific anti-saliva IgG indicate the exposure to the vector and may also help to estimate the risk of Leishmania spp. transmission. In this study, we examined the canine antibody response against the saliva of Phlebotomus perniciosus, the main vector of Leishmania infantum in the Mediterranean Basin, and characterized salivary antigens of this sand fly species.

Methodology/Principal Findings

Sera of dogs bitten by P. perniciosus under experimental conditions and dogs naturally exposed to sand flies in a L. infantum focus were tested by ELISA for the presence of anti-P. perniciosus antibodies. Antibody levels positively correlated with the number of blood-fed P. perniciosus females. In naturally exposed dogs the increase of specific IgG, IgG1 and IgG2 was observed during sand fly season. Importantly, Leishmania-positive dogs revealed significantly lower anti-P. perniciosus IgG2 compared to Leishmania-negative ones. Major P. perniciosus antigens were identified by western blot and mass spectrometry as yellow proteins, apyrases and antigen 5-related proteins.

Conclusions

Results suggest that monitoring canine antibody response to sand fly saliva in endemic foci could estimate the risk of L. infantum transmission. It may also help to control canine leishmaniasis by evaluating the effectiveness of anti-vector campaigns. Data from the field study where dogs from the Italian focus of L. infantum were naturally exposed to P. perniciosus bites indicates that the levels of anti-P. perniciosus saliva IgG2 negatively correlate with the risk of Leishmania transmission. Thus, specific IgG2 response is suggested as a risk marker of L. infantum transmission for dogs.  相似文献   

9.

Background

The mosquito Aedes aegypti is the primary global vector for dengue and yellow fever viruses. Sequencing of the Ae. aegypti genome has stimulated research in vector biology and insect genomics. However, the current genome assembly is highly fragmented with only ∼31% of the genome being assigned to chromosomes. A lack of a reliable source of chromosomes for physical mapping has been a major impediment to improving the genome assembly of Ae. aegypti.

Methodology/Principal Findings

In this study we demonstrate the utility of mitotic chromosomes from imaginal discs of 4th instar larva for cytogenetic studies of Ae. aegypti. High numbers of mitotic divisions on each slide preparation, large sizes, and reproducible banding patterns of the individual chromosomes simplify cytogenetic procedures. Based on the banding structure of the chromosomes, we have developed idiograms for each of the three Ae. aegypti chromosomes and placed 10 BAC clones and a 18S rDNA probe to precise chromosomal positions.

Conclusion

The study identified imaginal discs of 4th instar larva as a superior source of mitotic chromosomes for Ae. aegypti. The proposed approach allows precise mapping of DNA probes to the chromosomal positions and can be utilized for obtaining a high-quality genome assembly of the yellow fever mosquito.  相似文献   

10.

Background

Zoonotic cutaneous leishmaniasis (ZCL) due to Leishmania major is highly prevalent in Tunisia and is transmitted by a hematophagous vector Phlebotomus papatasi (P. papatasi). While probing for a blood meal, the sand fly injects saliva into the host''s skin, which contains a variety of compounds that are highly immunogenic. We recently showed that the presence of anti-saliva antibodies was associated with an enhanced risk for leishmaniasis and identified the immunodominant salivary protein of Phlebotomus papatasi as a protein of approximately 30 kDa.

Methodology/Principal Findings

We cloned and expressed in mammalian cells two salivary proteins PpSP30 and PpSP32 with predicted molecular weights close to 30 kDa from the Tunisian strain of P. papatasi. The two recombinant salivary proteins were purified by two-step HPLC (High-Performance Liquid Chromatography) and tested if these proteins correspond to the immunodominant antigen of 30 kDa previously shown to be recognized by human sera from endemic areas for ZCL and exposed naturally to P. papatasi bites. While recombinant PpSP30 (rPpSP30) was poorly recognized by human sera from endemic areas for ZCL, rPpSP32 was strongly recognized by the tested sera. The binding of human IgG antibodies to native PpSP32 was inhibited by the addition of rPpSP32. Consistently, experiments in mice showed that PpSP32 induced the highest levels of antibodies compared to other P. papatasi salivary molecules while PpSP30 did not induce any detectable levels of antibodies.

Conclusions

Our findings demonstrate that PpSP32 is the immunodominant target of the antibody response to P. papatasi saliva. They also indicate that the recombinant form of PpSP32 is similar to the native one and represents a good candidate for large scale testing of human exposure to P. papatasi bites and perhaps for assessing the risk of contracting the disease.  相似文献   

11.

Background

Dengue fever is reemerging on the island of Martinique and is a serious threat for the human population. During dengue epidemics, adult Aedes aegypti control with pyrethroid space sprays is implemented in order to rapidly reduce transmission. Unfortunately, vector control programs are facing operational challenges with the emergence of pyrethroid resistant Ae. aegypti populations.

Methodology/Principal Findings

To assess the impact of pyrethroid resistance on the efficacy of treatments, applications of deltamethrin and natural pyrethrins were performed with vehicle-mounted thermal foggers in 9 localities of Martinique, where Ae. aegypti populations are strongly resistant to pyrethroids. Efficacy was assessed by monitoring mortality rates of naturally resistant and laboratory susceptible mosquitoes placed in sentinel cages. Before, during and after spraying, larval and adult densities were estimated. Results showed high mortality rates of susceptible sentinel mosquitoes treated with deltamethrin while resistant mosquitoes exhibited very low mortality. There was no reduction of either larval or adult Ae. aegypti population densities after treatments.

Conclusions/Significance

This is the first documented evidence that pyrethroid resistance impedes dengue vector control using pyrethroid-based treatments. These results emphasize the need for alternative tools and strategies for dengue control programs.  相似文献   

12.

Background

Aedes aegypti is the most important vector of dengue fever in Brazil, where severe epidemics have recently taken place. Ae. aegypti in Brazil was the subject of an intense eradication program in the 1940s and 50s to control yellow fever. Brazil was the largest country declared free of this mosquito by the Pan-American Health Organization in 1958. Soon after relaxation of this program, Ae. aegypti reappeared in this country, and by the early 1980s dengue fever had been reported. The aim of this study is to analyze the present-day genetic patterns of Ae. aegypti populations in Brazil.

Methodology/Principal Findings

We studied the genetic variation in samples of 11 widely spread populations of Ae. aegypti in Brazil based on 12 well-established microsatellite loci. Our principal finding is that present-day Brazilian Ae. aegypti populations form two distinct groups, one in the northwest and one in the southeast of the country. These two groups have genetic affinities to northern South American countries and the Caribbean, respectively. This is consistent with what has been reported for other genetic markers such as mitochondrial DNA and allele frequencies at the insecticide resistance gene, kdr.

Conclusions/Significance

We conclude that the genetic patterns in present day populations of Ae. aegypti in Brazil are more consistent with a complete eradication of the species in the recent past followed by re-colonization, rather than the alternative possibility of expansion from residual pockets of refugia. At least two colonizations are likely to have taken place, one from northern South American countries (e.g., Venezuela) that founded the northwestern group, and one from the Caribbean that founded the southeastern group. The proposed source areas were never declared free of Ae. aegypti.  相似文献   

13.

Background

Bunyamwera orthobunyavirus is both the prototype and study model of the Bunyaviridae family. The viral NSs protein seems to contribute to the different outcomes of infection in mammalian and mosquito cell lines. However, only limited information is available on the growth of Bunyamwera virus in cultured mosquito cells other than the Aedes albopictus C6/36 line.

Methodology and Principal Findings

To determine potential functions of the NSs protein in mosquito cells, replication of wild-type virus and a recombinant NSs deletion mutant was compared in Ae. albopictus C6/36, C7-10 and U4.4 cells, and in Ae. aegypti Ae cells by monitoring N protein production and virus yields at various times post infection. Both viruses established persistent infections, with the exception of NSs deletion mutant in U4.4 cells. The NSs protein was nonessential for growth in C6/36 and C7-10 cells, but was important for productive replication in U4.4 and Ae cells. Fluorescence microscopy studies using recombinant viruses expressing green fluorescent protein allowed observation of three stages of infection, early, acute and late, during which infected cells underwent morphological changes. In the absence of NSs, these changes were less pronounced. An RNAi response efficiently reduced virus replication in U4.4 cells transfected with virus specific dsRNA, but not in C6/36 or C7/10 cells. Lastly, Ae. aegypti mosquitoes were exposed to blood-meal containing either wild-type or NSs deletion virus, and at various times post-feeding, infection and disseminated infection rates were measured. Compared to wild-type virus, infection rates by the mutant virus were lower and more variable. If the NSs deletion virus was able to establish infection, it was detected in salivary glands at 6 days post-infection, 3 days later than wild-type virus.

Conclusions/Significance

Bunyamwera virus NSs is required for efficient replication in certain mosquito cell lines and in Ae. aegypti mosquitoes.  相似文献   

14.

Background

Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels.

Methodologies/Principal Findings

Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study.

Conclusions/Significance

Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than targeting Ae. aegypti hotspots.  相似文献   

15.

Background

Female Aedes aegypti mosquitoes are the principal vector for dengue fever, causing 50–100 million infections per year, transmitted between human and mosquito by blood feeding. Ae. aegypti host-seeking behavior is known to be inhibited for three days following a blood meal by a hemolymph-borne humoral factor. Head Peptide-I is a candidate peptide mediating this suppression, but the mechanism by which this peptide alters mosquito behavior and the receptor through which it signals are unknown.

Methodology/Principal Findings

Head Peptide-I shows sequence similarity to short Neuropeptide-F peptides (sNPFs) that have been implicated in feeding behaviors and are known to signal through Neuropeptide Y (NPY)-Like Receptors (NPYLRs). We identified eight NPYLRs in the Ae. aegypti genome and screened each in a cell-based calcium imaging assay for sensitivity against a panel of peptides. Four of the Ae. aegypti NPYLRs responded to one or more peptide ligands, but only NYPLR1 responded to Head Peptide-I as well as sNPFs. Two NPYLR1 homologues identified in the genome of the Lyme disease vector, Ixodes scapularis, were also sensitive to Head Peptide-I. Injection of synthetic Head Peptide-I and sNPF-3 inhibited host-seeking behavior in non-blood-fed female mosquitoes, whereas control injections of buffer or inactive Head Peptide-I [Cys10] had no effect. To ask if NPYLR1 is necessary for blood-feeding-induced host-seeking inhibition, we used zinc-finger nucleases to generate five independent npylr1 null mutant strains and tested them for behavioral abnormalities. npylr1 mutants displayed normal behavior in locomotion, egg laying, sugar feeding, blood feeding, host seeking, and inhibition of host seeking after a blood meal.

Conclusions

In this work we deorphanized four Ae. aegypti NPYLRs and identified NPYLR1 as a candidate sNPF receptor that is also sensitive to Head Peptide-I. Yet npylr1 alone is not required for host-seeking inhibition and we conclude that other receptors, additional peptides, or both, regulate this important behavior.  相似文献   

16.

Background

Zika virus (ZIKV) is a little known arbovirus until it caused a major outbreak in the Pacific Island of Yap in 2007. Although the virus has a wide geographic distribution, most of the known vectors are sylvatic Aedes mosquitoes from Africa where the virus was first isolated. Presently, Ae. aegypti is the only known vector to transmit the virus outside the African continent, though Ae. albopictus has long been a suspected vector. Currently, Ae. albopictus has been shown capable of transmitting more than 20 arboviruses and its notoriety as an important vector came to light during the recent chikungunya pandemic. The vulnerability of Singapore to emerging infectious arboviruses has stimulated our interest to determine the competence of local Ae. albopictus to transmit ZIKV.

Methodology/Principal Findings

To determine the competence of Ae. albopictus to ZIKV, we orally infected local mosquito strains to a Ugandan strain virus. Fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 80–85%RH. Twelve mosquitoes were then sampled daily from day one to seven and on day 10 and 14 post infection (pi). Zika virus titre in the midgut and salivary glands of each mosquito were determined using tissue culture infectious dose50 assay, while transmissibility of the virus was determined by detecting viral antigen in the mosquito saliva by qRT-PCR. High dissemination and transmission rate of ZIKV were observed. By day 7-pi, all mosquitoes have disseminated infection and 73% of these mosquitoes have ZIKV in their saliva. By day 10-pi, all mosquitoes were potentially infectious.

Conclusions/Significance

The study highlighted the potential of Ae. albopictus to transmit ZIKV and the possibility that the virus could be established locally. Nonetheless, the threat of ZIKV can be mitigated by existing dengue and chikungunya control program being implemented in Singapore.  相似文献   

17.
Norte de Santander is a region in Colombia with a high incidence of dengue virus (DENV). In this study, we examined the serum concentration of anti-Aedes salivary gland extract (SGE) antibodies as a biomarker of DENV infection and transmission, and assessed the duration of anti-SGE antibody concentration after exposure to the vector ceased. We also determined whether SGE antibody concentration could differentiate between positive and negative DENV infected individuals and whether there are differences in exposure for each DENV serotype. We observed a significant decrease in the concentration of IgG antibodies at least 40 days after returning to an “Ae. aegypti-free” area. In addition, we found significantly higher anti-SGE IgG concentrations in DENV positive patients with some difference in exposure to mosquito bites among DENV serotypes. We conclude that the concentration of IgG antibodies against SGE is an accurate indicator of risk of dengue virus transmission and disease presence.  相似文献   

18.

Background

Pyrethroids are increasingly used to block the transmission of diseases spread by Aedes aegypti such as dengue and yellow fever. However, insecticide resistance poses a serious threat, thus there is an urgent need to identify the genes and proteins associated with pyrethroid resistance in order to produce effective counter measures. In Ae. aegypti, overexpression of P450s such as the CYP9J32 gene have been linked with pyrethroid resistance. Our aim was to confirm the role of CYP9J32 and other P450s in insecticide metabolism in order to identify potential diagnostic resistance markers.

Methodology/Principal Findings

We have expressed CYP9J32 in Escherichia coli and show that the enzyme can metabolize the pyrethroids permethrin and deltamethrin. In addition, three other Ae. aegypti P450s (CYP9J24, CYP9J26, CYP9J28) were found capable of pyrethroid metabolism, albeit with lower activity. Both Ae. aegypti and Anopheles gambiae P450s (CYP''s 6M2, 6Z2, 6P3) were screened against fluorogenic and luminescent substrates to identify potential diagnostic probes for P450 activity. Luciferin-PPXE was preferentially metabolised by the three major pyrethroid metabolisers (CYP9J32, CYP6M2 and CYP6P3), identifying a potential diagnostic substrate for these P450s.

Conclusions/Significance

P450s have been identified with the potential to confer pyrethroid resistance in Ae.aegypti. It is recommended that over expression of these enzymes should be monitored as indicators of resistance where pyrethroids are used.  相似文献   

19.

Background

Vector competence of Aedes aegypti mosquitoes is a quantitative genetic trait that varies among geographic locations and among different flavivirus species and genotypes within species. The subspecies Ae. aegypti formosus, found mostly in sub-Saharan Africa, is considered to be refractory to both dengue (DENV) and yellow fever viruses (YFV) compared to the more globally distributed Ae. aegypti aegypti. Within Senegal, vector competence varies with collection site and DENV-2 viral isolate, but knowledge about the interaction of West African Ae. aegypti with different flaviviruses is lacking. The current study utilizes low passage isolates of dengue-2 (DENV-2-75505 sylvatic genotype) and yellow fever (YFV BA-55 -West African Genotype I, or YFV DAK 1279-West African Genotype II) from West Africa and field derived Ae. aegypti collected throughout Senegal to determine whether vector competence is flavivirus or virus genotype dependent.

Methodology/Principal Findings

Eight collections of 20–30 mosquitoes from different sites were fed a bloodmeal containing either DENV-2 or either isolate of YFV. Midgut and disseminated infection phenotypes were determined 14 days post infection. Collections varied significantly in the rate and intensity of midgut and disseminated infection among the three viruses.

Conclusions/Significance

Overall, vector competence was dependent upon both viral and vector strains. Importantly, contrary to previous studies, sylvatic collections of Ae. aegypti showed high levels of disseminated infection for local isolates of both DENV-2 and YFV.  相似文献   

20.

Background

A life-shortening strain of the obligate intracellular bacteria Wolbachia, called wMelPop, is seen as a promising new tool for the control of Aedes aegypti. However, developing a vector control strategy based on the release of mosquitoes transinfected with wMelPop requires detailed knowledge of the demographics of the target population.

Methodology/Principal Findings

In Tri Nguyen village (611 households) on Hon Mieu Island in central Vietnam, we conducted nine quantitative entomologic surveys over 14 months to determine if Ae. aegypti populations were spatially and temporally homogenous, and to estimate population size. There was no obvious relationship between mosquito (larval, pupal or adult) abundance and temperature and rainfall, and no area of the village supported consistently high numbers of mosquitoes. In almost all surveys, key premises produced high numbers of Ae. aegypti. However, these premises were not consistent between surveys. For an intervention based on a single release of wMelPop-infected Ae. aegypti, release ratios of infected to uninfected adult mosquitoes of all age classes are estimated to be 1.8–6.7∶1 for gravid females (and similarly aged males) or teneral adults, respectively. We calculated that adult female mosquito abundance in Tri Nguyen village could range from 1.1 to 43.3 individuals of all age classes per house. Thus, an intervention could require the release of 2–78 wMelPop-infected gravid females and similarly aged males per house, or 7–290 infected teneral female and male mosquitoes per house.

Conclusions/Significance

Given the variability we encountered, this study highlights the importance of multiple entomologic surveys when evaluating the spatial structure of a vector population or estimating population size. If a single release of wMelPop-infected Ae. aegypti were to occur when wild Ae. aegypti abundance was at its maximum, a preintervention control program would be necessary to ensure that there was no net increase in mosquito numbers. However, because of the short-term temporal heterogeneity, the inconsistent spatial structure and the impact of transient key premises that we observed, the feasibility of multiple releases of smaller numbers of mosquitoes also needs to be considered. In either case, fewer wMelPop-infected mosquitoes would then need to be released, which will likely be more acceptable to householders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号