首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic relationships among 70 accessions of Houttuynia Thunb. from Sichuan, Chongqing, Guizhou and Jiangsu provinces in China were tested using RAPD and ISSR markers. The results showed that the polymorphism of Houttuynia germplasm was high at the DNA level. ISSR markers are more efficient than RAPD markers at uncovering the polymorphism of the genus Houttuynia. The genetic variation between the cultivated and the wild Houttuynia cordata accessions was insignificant according to RAPD and ISSR markers. The results of cluster analysis by using UPGMA method showed that the groups based on ISSR GS was correlated with chromosome numbers and many accessions with the same chromosome numbers could be classified together. Analysis based on RAPD GS was more related to geographic distribution. Furthermore, the cluster analysis based on RAPD and ISSR markers also showed that the genetic diversity in mountainous and margin areas of Sichuan Basin was more plentiful than that at the bottom of the Basin and its surrounding highlands or hills. Houttuynia emeiensis accession could not be separated completely from H. cordata accessions, it was closely related to H. cordata cytotype A with the chromosome number of 36. Within H. cordata, the genetic similarities between each pair of cytotypes C, D, E, F, G, H, I, J, K and L were higher, but the genetic similarities between each of them to the cytotype A were relatively lower. The phylogeny of the germplasm resources of the genus Houttuynia was also discussed.  相似文献   

2.
3.
Switchgrass (Panicum virgatum), a warm season C4 grass, is a promising crop for bioenergy-dedicated biomass production. Understanding of genetic diversity within Panicum genus will facilitate switchgrass breeding. Genetic relationships of 22 Panicum species from six continents including ninety-one USDA germplasm accessions were investigated by Sequence-Related Amplified Polymorphism (SRAP) and Expressed Sequence Tags-Simple Sequence Repeat (EST-SSR) markers. Eight hundred and twenty-six markers from 28 pairs of SRAP and 25 pairs of EST-SSR Primers were used to differentiate between accessions of a bulk of 25 genotypes. The results showed that there was high genetic diversity found in Panicum species. Most genetic variation was present among the different species and cluster analysis indicated that all the Panicum accessions could be distinguished by SRAP or EST-SSR. Dendrogram results reflected the phylogenetic relationships between Panicum species and Panicum amarum was found to be the closest species to switchgrass. Comparison between molecular markers revealed that SRAP methods were considered more efficient than EST-SSR for screening Panicum accessions.  相似文献   

4.
Restriction fragment length polymorphism diversity in soybean   总被引:7,自引:0,他引:7  
Summary Fifty-eight soybean accessions from the genus Glycine, subgenus Soja, were surveyed with 17 restriction fragment length polymorphism (RFLP) genetic markers to assess the level of molecular diversity and to evaluate the usefulness of previously identified RFLP markers. In general, only low levels of molecular diversity were observed: 2 of the 17 markers exhibited three alleles per locus, whereas all others had only two alleles. Thirty-five percent of the markers had rare alleles present in only 1 or 2 of the 58 accessions. Molecular diversity was least among cultivated soybeans and greatest between accessions of different soybean species such as Glycine max (L.) Merr. and G. soja Sieb. and Zucc. Principal component analysis was useful in reducing the multidimensional genotype data set and identifying genetic relationships.  相似文献   

5.
Mexico is the center of diversity of the husk tomato (Physalis L., Solanaceae), which includes a number of commercially important edible and ornamental species. Taxonomic identification is presently based on morphological characteristics, but the presence of high inter- and intraspecific morphological variation makes this task difficult. Six ISSR primers were used on eight Mexican species of Physalis to determine their utility for interspecific taxonomic discrimination and to assess their potential for inferring interspecific relationships. The six ISSR primers amplified 101 bands, with 100% polymorphism across samples. The number of bands per primer varied from 10 to 21. All primers produced different fingerprint profiles for each species, confirming the ISSR value in taxonomic discrimination. Discrimination values based on Simpson’s diversity index varied from 0.48 to 0.58. Genetic interspecific similarity values ranged from 0.20 to 0.57, and intraspecific similarity values were highest for Physalis angulata (0.71), followed by Physalis philadelphica (0.63) and Physalis lagascae (0.55). The UPGMA analysis grouped accessions of the same species together and clustered together Physalis species of similar morphological traits. Thus, ISSR markers are useful in estimating genetic relationships in Physalis.  相似文献   

6.
The genetic diversity of the genus Lespedeza is not well known and the phylogenetic relationship of Lespedeza with the genus Kummerowia is unclear. We report the first study in which polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) markers derived from Medicago, cowpea and soybean were used to assess the genetic diversity of the USDA Lespedeza germplasm collection and clarify its phylogenetic relationship with the genus Kummerowia. Phylogenetic analysis partitioned 44 Lespedeza accessions into three main groups some of which were species-specific and eight subgroups. This data set revealed some misidentified accessions, and indicated that the two species in the genus Kummerowia are closely related to the genus Lespedeza. Morphological reexamination was used to correct the misidentified accessions within the genus Lespedeza. Our results demonstrated that phylogenetic analysis with morphological reexamination provides a more complete approach to classify accessions in plant germplasm collection and conservation.  相似文献   

7.
Genetic variability and population structure of Bergenia ciliata (Haw.) Sternb., commonly known as “Pashanbheda” (Stone-breaker), collected from the Western Himalayan region of India were estimated using two DNA fingerprinting methods viz., directed amplification of minisatellite DNA (DAMD) and inter simple sequence repeats (ISSR). The cumulative data analysis of DAMD and ISSR markers for 74 accessions from eight populations showed 86.1% polymorphism. Analysis of molecular variance (AMOVA) showed highest percentage of variation within individuals of populations (73.6%) and 21.7% among populations. STRUCTURE and PCoA analyses on the hierarchical partitioning of genetic diversity showed strong admixture of individuals among the eight assumed geographical populations of B. ciliata. The data suggests that high genetic flow is one of the major factors responsible for low genetic differentiation. Preservation of genetic diversity of B. ciliata is important, both to promote adaptability of the populations to changing environment as well as to preserve a large gene pool for future prospection. The present study using DAMD and ISSR markers, therefore, provide the means of rapid characterization of accessions within the populations, and thus enable the selection of appropriate accessions for further utilization in conservation and prospection programmes.  相似文献   

8.
The genus Origanum is often referred to as an under-utilized taxon because of its complex taxonomy. Origanum vulgare L., the most variable species of the genus, is a spice and medicinal herb that is characterized by high morphological diversity (six subspecies). In this study, the relative efficiencies of two PCR-based marker approaches, amplified fragment length polymorphism (AFLP) and selectively amplified microsatellite polymorphic loci (SAMPL), were used for comparable genetic diversity surveys and subspecies discrimination among 42 oregano accessions. Seven assays each of AFLP and SAMPL markers were utilized. Effective multiplex ratio (EMR), average heterozygosity (Hav-p), marker index (MI), and resolving power (RP) of the primer combinations were calculated for the two marker systems. UPGMA and Structure analysis along with PCoA plots derived from the binary data matrices of the two markers depicted the genetic distinction of accessions. Our results indicate that both marker systems are suitable but SAMPL markers are slightly more efficient in differentiating accessions and subspecies than AFLPs.  相似文献   

9.
Common wild rice (Oryza rufipogon Griff.), the progenitor of Asian cultivated rice (O. sativa L.), is endangered due to habitat loss. The objectives of this research were to evaluate the genetic diversity of wild rice species in isolated populations and to develop a core collection of representative genotypes for ex situ conservation. We collected 885 wild rice accessions from eight geographically distinct regions and transplanted these accessions in a protected conservation garden over a period of almost two decades. We evaluated these accessions for 13 morphological or phenological traits and genotyped them for 36 DNA markers evenly distributed on the 12 chromosomes. The coefficient of variation of quantitative traits was 0.56 and ranged from 0.37 to 1.06. SSR markers detected 206 different alleles with an average of 6 alleles per locus. The mean polymorphism information content (PIC) was 0.64 in all populations, indicating that the marker loci have a high level of polymorphism and genetic diversity in all populations. Phylogenetic analyses based on morphological and molecular data revealed remarkable differences in the genetic diversity of common wild rice populations. The results showed that the Zengcheng, Gaozhou, and Suixi populations possess higher levels of genetic diversity, whereas the Huilai and Boluo populations have lower levels of genetic diversity than do the other populations. Based on their genetic distance, 130 accessions were selected as a core collection that retained over 90% of the alleles at the 36 marker loci. This genetically diverse core collection will be a useful resource for genomic studies of rice and for initiatives aimed at developing rice with improved agronomic traits.  相似文献   

10.
Genetic diversity among 25 accessions (involving 8 species, 2 interspecific hybrids and one hybrid mutant) of medicinally important genus Cymbopogon was assessed using 17 PCR-based functional markers, that were designed from members of three different multigene families. We developed 16 primer pairs from two multigene families, 8 primer pairs each from cytochrome P450 and UDP-glucosyltransferase (UGT); one primer pair was derived from 5S rRNA gene family. A total of 119 fragments were visualized, of which 108 (91%) were polymorphic. The level of diversity among different taxa/accessions observed during the present study was, however, low relative to the diversity level obtained due to RAPD markers in two earlier studies. The pattern of genetic diversity neither matched with the known taxonomic classification, nor did it always match with the distribution of chemical constituents of the essential oils available in these accessions. Thus, present investigation though revealed poor correlation between the molecular and chemical diversity, these gene-based markers may prove useful in the development of perfect markers for association mapping of genes involved in controlling agronomically important traits.  相似文献   

11.
Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/.  相似文献   

12.
Maize (Zea mays L.) harbours significant genetic diversity not only in its centre of origin (Mexico) but also in several countries worldwide, including India, in the form of landraces. In this study, DNA fingerprinting of 48 landrace accessions from diverse regions of India was undertaken using 42 fluorescent dye-labeled Simple Sequence Repeat (SSR) markers, followed by allele resolution using DNA sequencer and analysis of molecular diversity within and among these landraces. The study revealed a large number of alleles (550), with high mean number of alleles per locus (13.1), and Polymorphism Information Content (PIC) of 0.60, reflecting the level of diversity in the landrace accessions. Besides identification of 174 unique alleles in 44 accessions, six highly frequent SSR alleles were detected at six loci (phi014, phi090, phi112, umc1367, phi062 and umc1266) with individual frequencies greater than 0.75, indicating that chromosomal regions harboring these SSR alleles are not selectively neutral. F statistics revealed very high genetic differentiation, population subdivision and varying levels of inbreeding in the landraces. Analysis of Molecular Variance showed that 63 % of the total variation in the accessions could be attributed to within-population diversity, and 37 % represented between population diversity. Cluster analysis of SSR data using Nei’s genetic distance and UPGMA revealed considerable genetic diversity in these populations, although no clear separation of accessions was observed based on their geographic origin.  相似文献   

13.
The eggplant (Solanum melongena L.) genome is the least investigated among the economically most important solanaceous crops. Extensive use of molecular markers will improve eggplant germplasm enhancement and breeding. Microsatellites, or simple sequence repeats, have proved to be very useful for eggplant germplasm management and breeding, but there is limited availability of these polymorphic, codominant, and highly repeatable markers in eggplant. We developed a genomic DNA library enriched with AG/CT, which allowed the identification of 55 new genomic microsatellites. Variation parameters of microsatellite loci analyzed showed high average values. The potential of these markers for fingerprinting was assessed in a collection of 24 accessions, of which 22 correspond to S. melongena from different types (landraces, heirlooms, modern F1 hybrids, and obsolete cultivars) and origins, and two to each of the cultivated relatives S. aethiopicum and S. macrocarpon. The multivariate (cluster and PCoA) analyses clearly differentiated four main clusters: (a) two outgroups formed by S. aethiopicum and S. macrocarpon accessions, (b) S. melongena accessions derived mostly from the Mediterranean basin, Central Europe, Africa, and America (??occidental?? eggplants), and (c) S. melongena accessions derived mostly from Eastern and Southeastern Asia (??oriental?? eggplants). However, no apparent association pattern was found for accessions of the different types. Observed heterozygosity (H o) values were low, although hybrid cultivars had higher values (H o?=?0.12) than non-hybrid materials (H o?=?0.02). The new set of eggplant microsatellite markers has proved highly informative and useful for studying the diversity, relationships, and genetic characteristics of an eggplant collection. These markers will be useful for germplasm management and breeding in eggplant.  相似文献   

14.
Moringa is a genus of the tropical flowering plant family Moringaceae containing 13 diverse species. Among the different species, only Moringa oleifera L. is cultivated. This species has great potential in serving as a high-value crop for food, medicinal products, as well as fodder for animals, particularly in developing tropical regions of the world. In this study, the genetic diversity and population structure of world-wide collections of M. oleifera were investigated using DNA markers. A total of 19 microsatellite or simple sequence repeat (SSR) markers along with a partial sequence of the chloroplast gene atpB were used to study genetic diversity within 161 accessions of M. oleifera collected from Asia, Africa, North and South America, and the Caribbean. On average, 8.3 alleles/per SSR were amplified in each accession. A total number of 158 alleles were detected in 131 accessions collected from the wild in Pakistan and from 30 accessions obtained from ECHO (Florida). Observed heterozygosity varied from 0.16 to 0.86, with an average of 0.58, while the average PIC value was 0.59. Partial sequencing of chloroplast genes of 43 of 161 plants generated mixed patterns. These findings have demonstrated that there is a large genetic diversity present in wild collections of M. oleifera collected in Pakistan; whereas low genetic diversity is detected in cultivated accessions obtained from ECHO. Taken together, these results agree with previous reports that M. oleifera is native to the Indo-Pakistan ecological region, and provides sufficient diversity for genetic exploration as well as for genetic improvement efforts.  相似文献   

15.
Elymus sibiricus is a perennial, self-pollinating, allotetraploid grass native to northern Asia. It is widely used in cultivated pastures and natural grassland due to excellent cold and drought tolerance, good forage quality, and adaptability to a variety of habitats. Information on the genetic diversity and variation among worldwide E. sibiricus germplasm is limited but necessary for germplasm collection, conservation and effective commercial use. In this study we ana lyzed genetic diversity and variation of 69 E. sibiricus accessions from the species range and constructed DNA fingerprinting profiles of 24 accessions using SCoT markers. A total of 173 bands were generated from 16 SCoT primers, 154 of which were polymorphic with 89.0% of polymorphic bands (PPB) occurring at the species level. The PPB within 8 geographical regions ranged from 2.3 to 54.3 %. Genetic variation was greater within geographical regions (57.9%) than between regions (42.1%). The 24 accessions from Qinghai-Tibet Plateau, Mongolia Plateau, Kazakhstan, and Russia were distinguished by their unique fingerprinting. This is the first report using SCoT markers for identifying cultivars and accessions of E. sibiricus. The DNA fingerprinting profiles of E. sibiricus were useful in germplasm collection and identification. The genetic diversity of worldwide E. sibiricus germplasm has been substantially affected by ecogeographical factors. Our results suggest that collecting and evaluating E. sibiricus germplasm from major geographic regions and unique environments broadens the available genetic base and illustrates the range of variation.  相似文献   

16.
Murraya koenigii (L.) Spreng. (Rutaceae), is an aromatic plant and much valued for its flavor, nutritive and medicinal properties. In this study, three DNA fingerprinting methods viz., random amplification of polymorphic DNA (RAPD), directed amplification of minisatellite DNA (DAMD), and inter-simple sequence repeat (ISSR), were used to unravel the genetic variability and relationships across 92 wild and cultivated M. koenigii accessions. A total of 310, 102, and 184, DNA fragments were amplified using 20 RAPD, 5 DAMD, and 13 ISSR primers, revealing 95.80, 96.07, and 96.73% polymorphism, respectively, across all accessions. The average polymorphic information content value obtained with RAPD, DAMD, and ISSR markers was 0.244, 0.250, and 0.281, respectively. The UPGMA tree, based on Jaccard’s similarity coefficient generated from the cumulative (RAPD, DAMD, and ISSR) band data showed two distinct clusters, clearly separating wild and cultivated accessions in the dendrogram. Percentage polymorphism, gene diversity (H), and Shannon information index (I) estimates were higher in cultivated accessions compared to wild accessions. The overall high level of polymorphism and varied range of genetic distances revealed a wide genetic base in M. koenigii accessions. The study suggests that RAPD, DAMD, and ISSR markers are highly useful to unravel the genetic variability in wild and cultivated accessions of M. koenigii.  相似文献   

17.
Festuca arundinacea Schreb., commonly known as tall fescue, is a major forage crop in temperate regions. Recently, a molecular analysis of different accessions of a world germplasm collection of tall fescue has demonstrated that it contains different species from the genus Festuca and allowed their rapid classification into the three major morphotypes (Continental, Mediterranean and Rhizomatous). In this study, we explored the genetic diversity of 161 accessions of Festuca species from 29 countries, including 28 accessions of INTA (Argentina), by analyzing 15 polymorphic SSR markers by capillary electrophoresis. These molecular markers allowed us to detect a total of 214 alleles. The number of alleles per locus varied between 5 and 24, and the values of polymorphic information content ranged from 0.627 to 0.840. In addition, the accessions analyzed by flow cytometry showed different ploidy levels (diploid, tetraploid, hexaploid and octaploid), placing in evidence that the world germplasm collection consisted of multiple species, as previously suggested. Interestingly, almost all accessions of INTA germplasm collection were true hexaploid tall fescue, belonging to two eco-geographic races (Continental and Mediterranean). Finally, the data presented revealed an ample genetic diversity of tall fescue showing the importance of preserving the INTA collection for future breeding programs.  相似文献   

18.
The genetic diversity present in crop landraces represents a valuable genetic resource for breeding and genetic studies. Bottle gourd (Lagenaria siceraria) landraces in Turkey are highly genetically diverse. However, the limited genomic resources available for this crop hinder the molecular characterization of Turkish bottle gourd germplasm for its adequate conservation and management. Therefore, we evaluated the efficacy of 40 SSR markers from major cucurbit crops (Cucurbita pepo L. and Cucurbita moschata L.) in 30 bottle gourd landraces, together with 16 SRAP primer combinations. In addition, we compared the genetic relationship between bottle gourd and 31 other cucurbit accessions (11 Cucurbita maxima, 3 C. moschata, 5 C. pepo subsp. ovifera, 10 C. pepo and 2 Luffa cylindrica). Twenty-seven Cucurbita SSR markers showed transferability to bottle gourd. SSR markers amplified 59 alleles, in bottle gourd genome with an average of 1.64 alleles per locus. Together, SSR and SRAP markers amplified 453 fragments across the 61 accessions, and clearly discriminated L. siceraria and L. cylindrica from the other cucurbit species. Genetic diversity analysis separated edible cucurbit from ornamentals, while population structure analysis classified L. siceraria in two subpopulations defined by fruit shape, rather than geographical origin. The results indicated that the genomic resources available for Cucurbita species are valuable to study and preserve the genetic diversity of bottle gourd in Turkey.  相似文献   

19.
The production of bananas is threatened by rapid spreading of various diseases and adverse environmental conditions. The preservation and characterization of banana diversity is essential for the purposes of crop improvement. The world''s largest banana germplasm collection maintained at the Bioversity International Transit Centre (ITC) in Belgium is continuously expanded by new accessions of edible cultivars and wild species. Detailed morphological and molecular characterization of the accessions is necessary for efficient management of the collection and utilization of banana diversity. In this work, nuclear DNA content and genomic distribution of 45S and 5S rDNA were examined in 21 diploid accessions recently added to ITC collection, representing both sections of the genus Musa. 2C DNA content in the section Musa ranged from 1.217 to 1.315 pg. Species belonging to section Callimusa had 2C DNA contents ranging from 1.390 to 1.772 pg. While the number of 45S rDNA loci was conserved in the section Musa, it was highly variable in Callimusa species. 5S rRNA gene clusters were found on two to eight chromosomes per diploid cell. The accessions were genotyped using a set of 19 microsatellite markers to establish their relationships with the remaining accessions held at ITC. Genetic diversity done by SSR genotyping platform was extended by phylogenetic analysis of ITS region. ITS sequence data supported the clustering obtained by SSR analysis for most of the accessions. High level of nucleotide diversity and presence of more than two types of ITS sequences in eight wild diploids pointed to their origin by hybridization of different genotypes. This study significantly expands the number of wild Musa species where nuclear genome size and genomic distribution of rDNA loci is known. SSR genotyping identified Musa species that are closely related to the previously characterized accessions and provided data to aid in their classification. Sequence analysis of ITS region provided further information about evolutionary relationships between individual accessions and suggested that some of analyzed accessions were interspecific hybrids and/or backcross progeny.  相似文献   

20.
The genetic diversity of the genus Crotalaria is unknown even though many species in this genus are economically valuable. We report the first study in which polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) markers derived from Medicago and soybean were used to assess the genetic diversity of the Crotalaria germplasm collection. This collection consisted of 26 accessions representing 4 morphologically characterized species. Phylogenetic analysis partitioned accessions into 4 main groups generally along species lines and revealed that 2 accessions were incorrectly identified as Crotalaria juncea and Crotalaria spectabilis instead of Crotalaria retusa. Morphological re-examination confirmed that these 2 accessions were misclassified during curation or conservation and were indeed C. retusa. Some amplicons from Crotalaria were sequenced and their sequences showed a high similarity (89% sequence identity) to Medicago truncatula from which the EST-SSR primers were designed; however, the SSRs were completely deleted in Crotalaria. Highly distinguishing markers or more sequences are required to further classify accessions within C. juncea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号