首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphatidylinositol 3-kinase (PI3K) has been shown to be an important mediator of intracellular signal transduction in mammalian cells. We show here, for the first time, that the blockade of PI3K activity in human fetal undifferentiated cells induced morphological and functional endocrine differentiation. This was associated with an increase in mRNA levels of insulin, glucagon, and somatostatin, as well as an increase in the insulin protein content and secretion in response to secretagogues. Blockade of PI3K also increased the proportion of pluripotent precursor cells coexpressing multiple hormones and the total number of terminally differentiated cells originating from these precursor cells. We examined whether any of the recently described modulators of endocrine differentiation could participate in regulating PI3K activity in fetal islet cells. The activity of PI3K was inversely correlated with the hepatocyte growth factor/scatter factor–induced downregulation or nicotinamideinduced upregulation of islet-specific gene expression, giving support to the role of PI3K, as a negative regulator of endocrine differentiation. In conclusion, our results provide a mechanism for the regulation of hormone-specific gene expression during human fetal neogenesis. They also suggest a novel function for PI3K, as a negative regulator of cellular differentiation.  相似文献   

2.
3.
4.
Polyphosphate (polyP) is a pro-inflammatory agent and a potent modulator of the human blood-clotting system. The presence of polyP of 60 phosphate units was identified in rat basophilic leukemia (RBL-2H3) mast cells using specific enzymatic assays, urea-polyacrylamide gel electrophoresis of cell extracts, and staining of cells with 4,6-diamidino-2-phenylindole (DAPI), and the polyP-binding domain of Escherichia coli exopolyphosphatase. PolyP co-localizes with serotonin- but not with histamine-containing granules. PolyP levels greatly decreased in mast cells stimulated to degranulate by IgE. Mast cell granules were isolated and found to be acidic and decrease their polyP content upon alkalinization. In agreement with these results, when RBL-2H3 mast cells were loaded with the fluorescent calcium indicator fura-2 acetoxymethyl ester to measure their intracellular Ca(2+) concentration ([Ca(2+)](i)), they were shown to possess a significant amount of Ca(2+) stored in an acidic compartment different from lysosomes. PolyP derived from RBL-2H3 mast cells stimulated bradykinin formation, and it was also detected in human basophils. All of these characteristics of mast cell granules, together with their known elemental composition, and high density, are similar to those of acidocalcisomes. The results suggest that mast cells polyP could be an important mediator of their pro-inflammatory and pro-coagulant activities.  相似文献   

5.
Carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3) is a phagocytic receptor on human granulocytes, which mediates the opsonin-independent recognition and internalization of a restricted set of Gram-negative bacteria such as Neisseria gonorrhoeae. In an unbiased screen using a SH2 domain microarray we identified the SH2 domain of growth factor receptor-bound protein 14 (Grb14) as a novel binding partner of CEACAM3. Biochemical assays and microscopic studies demonstrated that the Grb14 SH2 domain promoted the rapid recruitment of this adaptor protein to the immunoreceptor-based activation motif (ITAM)-like sequence within the cytoplasmic domain of CEACAM3. Furthermore, FRET-FLIM analyses confirmed the direct association of Grb14 and CEACAM3 in intact cells at the sites of bacteria-host cell contact. Knockdown of endogenous Grb14 by RNA interference as well as Grb14 overexpression indicate an inhibitory role for this adapter protein in CEACAM3-mediated phagocytosis. Therefore, Grb14 is the first negative regulator of CEACAM3-initiated bacterial phagocytosis and might help to focus granulocyte responses to the subcellular sites of pathogen-host cell contact.  相似文献   

6.

Background

The Tensin family of intracellular proteins (Tensin1, -2, -3 and -4) are thought to act as links between the extracellular matrix and the cytoskeleton, and thereby mediate signaling for cell shape and motility. Dysregulation of Tensin expression has previously been implicated in human cancer. Here, we have for the first time evaluated the significance of all four Tensins in a study of human renal cell carcinoma (RCC), as well as probed the biological function of Tensin3.

Principal Findings

Expression of Tensin2 and Tensin3 at mRNA and protein levels was largely absent in a panel of diverse human cancer cell lines. Quantitative RT-PCR analysis revealed mRNA expression of all four Tensin genes to be significantly downregulated in human kidney tumors (50–100% reduction versus normal kidney cortex; P<0.001). Furthermore, the mRNA expressions of Tensins mostly correlated positively with each other and negatively with tumor grade, but not tumor size. Immunohistochemical analysis revealed Tensin3 to be present in the cytoplasm of tubular epithelium in normal human kidney sections, whilst expression was weaker or absent in 41% of kidney tumors. A subset of tumor sections showed a preferential plasma membrane expression of Tensin3, which in clear cell RCC patients was correlated with longer survival. Stable expression of Tensin3 in HEK 293 cells markedly inhibited both cell migration and matrix invasion, a function independent of putative phosphatase activity in Tensin3. Conversely, siRNA knockdown of endogenous Tensin3 in human cancer cells significantly increased their migration.

Conclusions

Our findings indicate that the Tensins may represent a novel group of metastasis suppressors in the kidney, the loss of which leads to greater tumor cell motility and consequent metastasis. Moreover, tumorigenesis in the human kidney may be facilitated by a general downregulation of Tensins. Therefore, anti-metastatic therapies may benefit from restoring or preserving Tensin expression in primary tumors.  相似文献   

7.
8.
9.
Abnormal blood cell production is associated with chronic kidney disease (CKD) and cardiovascular disease (CVD). Bone-derived FGF-23 (fibroblast growth factor-23) regulates phosphate homeostasis and bone mineralization. Genetic deletion of Fgf-23 in mice (Fgf-23−/−) results in hypervitaminosis D, abnormal mineral metabolism, and reduced lymphatic organ size. Elevated FGF-23 levels are linked to CKD and greater risk of CVD, left ventricular hypertrophy, and mortality in dialysis patients. However, whether FGF-23 is involved in the regulation of erythropoiesis is unknown. Here we report that loss of FGF-23 results in increased hematopoietic stem cell frequency associated with increased erythropoiesis in peripheral blood and bone marrow in young adult mice. In particular, these hematopoietic changes are also detected in fetal livers, suggesting that they are not the result of altered bone marrow niche alone. Most importantly, administration of FGF-23 in wild-type mice results in a rapid decrease in erythropoiesis. Finally, we show that the effect of FGF-23 on erythropoiesis is independent of the high vitamin D levels in these mice. Our studies suggest a novel role for FGF-23 in erythrocyte production and differentiation and suggest that elevated FGF-23 levels contribute to the pathogenesis of anemia in patients with CKD and CVD.  相似文献   

10.
11.
The endoplasmic reticulum (ER) is proposed to be a membrane donor for phagosome formation. In support of this, we have previously shown that the expression level of syntaxin 18, an ER-localized SNARE protein, correlates with phagocytosis activity. To obtain further insights into the involvement of the ER in phagocytosis we focused on Sec22b, another ER-localized SNARE protein that is also found on phagosomal membranes. In marked contrast to the effects of syntaxin 18, we report here that phagocytosis was nearly abolished in J774 macrophages stably expressing mVenus-tagged Sec22b, without affecting the cell surface expression of the Fc receptor or other membrane proteins related to phagocytosis. Conversely, the capacity of the parental J774 cells for phagocytosis was increased when endogenous Sec22b expression was suppressed. Domain analyses of Sec22b revealed that the R-SNARE motif, a selective domain for forming a SNARE complex with syntaxin18 and/or D12, was responsible for the inhibition of phagocytosis. These results strongly support the ER-mediated phagocytosis model and indicate that Sec22b is a negative regulator of phagocytosis in macrophages, most likely by regulating the level of free syntaxin 18 and/or D12 at the site of phagocytosis.  相似文献   

12.
13.
14.
The immune system eliminates Chlamydia trachomatis infection through inflammation. However, uncontrolled inflammation can enhance pathology. In mice, TNF-related apoptosis-inducing ligand receptor (TRAIL-R), known for its effects on apoptosis, also regulates inflammation. In humans, the four homologues of TRAIL-R had never been investigated for effects on inflammation. Here, we examined whether TRAIL-R regulates inflammation during chlamydial infection. We examined TRAIL-R1 single nucleotide polymorphisms (SNPs) in an Ecuadorian cohort with and without C. trachomatis infections. There was a highly significant association for the TRAIL+626 homozygous mutant GG for infection vs no infection in this population. To confirm the results observed in the human population, primary lung fibroblasts and bone marrow-derived macrophages (BMDMs) were isolated from wildtype (WT) and TRAIL-R-deficient mice, and TRAIL-R1 levels in human cervical epithelial cells were depleted by RNA interference. Infection of BMDMs and primary lung fibroblasts with C. trachomatis strain L2, or the murine pathogen C. muridarum, led to higher levels of MIP2 mRNA expression or IL-1β secretion from TRAIL-R-deficient cells than WT cells. Similarly, depletion of TRAIL-R1 expression in human epithelial cells resulted in a higher level of IL-8 mRNA expression and protein secretion during C. trachomatis infection. We conclude that human TRAIL-R1 SNPs and murine TRAIL-R modulate the innate immune response against chlamydial infection. This is the first evidence that human TRAIL-R1 is a negative regulator of inflammation and plays a role in modulating Chlamydia pathogenesis.  相似文献   

15.
The Rac1 GTPase is a critical regulator of cytoskeletal dynamics and controls many biological processes, such as cell migration, cell-cell contacts, cellular growth and cell division. These complex processes are controlled by Rac1 signaling through effector proteins. We have previously identified several effector proteins of Rac1 that also act as Rac1 regulatory proteins, including caveolin-1 and PACSIN2. Here, we report that Rac1 interacts through its C-terminus with nucleophosmin1 (NPM1), a multifunctional nucleo-cytoplasmic shuttling protein with oncogenic properties. We show that Rac1 controls NPM1 subcellular localization. In cells expressing active Rac1, NPM1 translocates from the nucleus to the cytoplasm. In addition, Rac1 regulates the localization of the phosphorylated pool of NPM1 as this pool translocated from the nucleus to the cytosol in cells expressing activated Rac1. Conversely, we found that expression of NPM1 limits Rac1 GTP loading and cell spreading. In conclusion, this study identifies NPM1 as a novel, negative regulator of Rac1.  相似文献   

16.
17.
18.
19.
20.
Bone morphogenetic proteins (BMPs) are a group of peptide growth factors closely related to transforming growth factors-β. The BMPs are suggested to play an essential role in bone development and they are strong candidate molecules to be used clinically to improve fracture healing. BMPs are also involved in the differentiation of several other tissues during embryogenesis. Here, we show that human recombinant BMP-2 regulates cell–matrix interactions by modifying the expression of integrin-type receptors. The synthesis of α3 integrin was down-regulated by BMP-2 in two osteogenic sarcoma-derived cell lines, Saos-2 and HOS, and also in human fetal chondrocytes. BMP-2 had no effect on the expression of α1, α2, α5, α6, and αV integrins. BMP-2 reduced the expression of α3 integrin subunit at mRNA level. Laminin-5 was shown to be the ligand for α3β1 integrin on Saos cells and BMP-2 decreased the ability of Saos cells to attach to it. These results suggest that BMP-2 has a specific effect on the α3β1 integrin-mediated cell adhesion to laminin-5. Given the fact that BMP-2 is expressed in osteosarcomas, in addition to in bone, this mechanism is putatively important especially in bone development and tumors. We also studied the effect of BMP-2 on a human keratinocyte cell line, HaCaT. In HaCaT cells, the expression of α2 integrin was strongly down-regulated by BMP-2, whereas its effect on the expression of α3 integrin was smaller. We suggest that the effects of BMP-2 may be partially mediated by specifically altered cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号