首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
By means of plasposon mutagenesis, mutants of Burkholderia cenocepacia 370 with the change in production of N-acyl-homoserine lactones (AHL), signal molecules of the Quorum Sensing system of regulation, were obtained. To localize plasposon insertions in mutant strains, fragments of chromosomal DNA containing plasposons were cloned, adjacent DNA regions sequenced, and a search for homologous nucleotide sequences in the GeneBank was initiated. It has been shown that the insertion of plasposon into gene lon encoding lon proteinase drastically decreases AHL synthesis. Upon insertion of plasposon into gene pps encoding phosphoenolpyruvate-synthase, enhancement of AHL production is observed. In mutant carrying inactivated gene lon, a strong decline of extracellular protease activity, hemolytic, and chitinolytic activities was observed in comparison with the original strain; lipase activity was not changed in this mutant. Mutation in gene pps did not affect these properties of B. cenocepacia 370. Mutations in genes lon and pps reduced the virulence of bacteria upon infection of mice.  相似文献   

3.
Many putative virulence factors of Burkholderia cenocepacia are controlled by various quorum sensing (QS) circuits. These QS systems either use N-acyl homoserine lactones (AHL) or cis-2-dodecenoic acid (“Burkholderia diffusible signal factor”, BDSF) as signalling molecules. Previous work suggested that there is little cross-talk between both types of systems. We constructed mutants in B. cenocepacia strain J2315, in which genes encoding CepI (BCAM1870), CciI (BCAM0239a) and the BDSF synthase (BCAM0581) were inactivated, and also constructed double (ΔcepIΔBCAM0581, ΔcciIΔBCAM0581 and ΔcepIΔcciI) mutants and a triple (ΔcepIΔcciIΔBCAM0581) mutant. Subsequently we investigated phenotypic properties (antibiotic susceptibility, biofilm formation, production of AHL and BDSF, protease activity and virulence in Caenorhabditis elegans) and measured gene expression in these mutants, and this in the presence and absence of added BDSF, AHL or both. The triple mutant was significantly more affected in biofilm formation, antimicrobial susceptibility, virulence in C. elegans, and protease production than either the single or double mutants. The ΔBCAM0581 mutant and the ΔcepIΔBCAM0581 and ΔcciIΔBCAM0581 double mutants produced significantly less AHL compared to the WT strain and the ΔcepI and ΔcciI single mutant, respectively. The expression of cepI and cciI in ΔBCAM0581, was approximately 3-fold and 7-fold (p<0.05) lower than in the WT, respectively. The observed differences in AHL production, expression of cepI and cciI and QS-controlled phenotypes in the ΔBCAM0581 mutant could (at least partially) be restored by addition of BDSF. Our data suggest that, in B. cenocepacia J2315, AHL and BDSF-based QS systems co-regulate the same set of genes, regulate different sets of genes that are involved in the same phenotypes and/or that the BDSF system controls the AHL-based QS system. As the expression of the gene encoding the C6-HSL synthase CciI (and to a lesser extent the C8-HSL synthase CepI) is partially controlled by BDSF, it seems likely that the BDSF QS systems controls AHL production through this system.  相似文献   

4.
5.
Polyphasic-taxonomic studies of the past decade have shown that the Burkholderia cepacia complex (Bcc) comprises at least nine species, which share a high degree of 16S rDNA (98-100%) sequence similarity but only moderate levels of DNA-DNA hybridization. Members of the Bcc are well known as opportunistic pathogens of plants, animals and humans but also as biocontrol and bioremediation agents. In this study intra-, surface-associated and extracellular proteins of B. cenocepacia H111, which was isolated from a cystic fibrosis patient, were examined by 2-DE coupled to MALDI-TOF MS. MS and MS/MS data were searched against a database comprising all currently available annotated proteins of genetically closely related strains. In total 642 proteins spots were successfully identified corresponding to 390 different protein species, which were classified into functional categories. The majority of these proteins could be linked to housekeeping functions in energy production, amino acid metabolism, protein folding, post-translational modification and turnover, and translation. Noteworthy is the fact that a significant number of truly secreted and membrane proteins were identified in the extracellular and surface-associated sub-proteomes. This indicates that the pre-fractionation protocol used in this study is a highly valuable strategy for unravelling the cellular location of the identified proteins.  相似文献   

6.
7.
群体感应(quorum sensing, QS)是一种广泛存在于多种微生物中的胞间通信系统,细菌产生的自诱导物随着种群密度的增加而积累,诱导细菌对种群密度的响应,调节生物膜的形成或特定基因的表达。近年来,随着群体感应系统原理与关键元件的逐渐清晰,应用合成生物学手段进行多技术联合以及多系统间正交性设计具有极大的发展潜力,群体感应系统已成为合成生物学家动态调控胞间通信常用的重要手段之一。在群体感应是细胞-细胞间通信系统的基础上,对多种群体感应系统的联合设计在生物基化学品生产中自动化调控的研究进展进行综述;并针对群体感应系统在生物电化学转化领域实现双向生物信息交流的应用进行总结;同时归纳了医学领域中群体感应系统的动态调控功能与多种疾病诊断及治疗结合的研究进展,讨论了群体感应系统在多细胞通信和实际应用等方面的发展前景。  相似文献   

8.
细菌群体感应系统的研究   总被引:2,自引:0,他引:2  
群体感应是细菌根据细胞密度变化进行基因表达调控的一种生理行为.细菌通过群体感应与周围环境进行信息交流,参与多种生理过程.就细菌群体感应系统的组成、作用机制、类型、特点及细菌中群体感应的最新进展作以综述.  相似文献   

9.
Burkholderia cepacia has emerged as an important pathogen in patients with cystic fibrosis. Many gram-negative pathogens regulate the production of extracellular virulence factors by a cell density-dependent mechanism termed quorum sensing, which involves production of diffusible N-acylated homoserine lactone signal molecules, called autoinducers. Transposon insertion mutants of B. cepacia K56-2 which hyperproduced siderophores on chrome azurol S agar were identified. One mutant, K56-R2, contained an insertion in a luxR homolog that was designated cepR. The flanking DNA region was used to clone the wild-type copy of cepR. Sequence analysis revealed the presence of cepI, a luxI homolog, located 727 bp upstream and divergently transcribed from cepR. A lux box-like sequence was identified upstream of cepI. CepR was 36% identical to Pseudomonas aeruginosa RhlR and 67% identical to SolR of Ralstonia solanacearum. CepI was 38% identical to RhlI and 64% identical to SolI. K56-R2 demonstrated a 67% increase in the production of the siderophore ornibactin, was protease negative on dialyzed brain heart infusion milk agar, and produced 45% less lipase activity in comparison to the parental strain. Complementation of a cepR mutation restored parental levels of ornibactin and protease but not lipase. An N-acylhomoserine lactone was purified from culture fluids and identified as N-octanoylhomoserine lactone. K56-I2, a cepI mutant, was created and shown not to produce N-octanoylhomoserine lactone. K56-I2 hyperproduced ornibactin and did not produce protease. These data suggest both a positive and negative role for cepIR in the regulation of extracellular virulence factor production by B. cepacia.  相似文献   

10.
Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour.  相似文献   

11.
12.
13.
14.
Biofilm formation in Burkholderia cenocepacia has been shown to rely in part on acylhomoserine lactone-based quorum sensing. For many other bacterial species, it appears that both the initial adherence and the later stages of biofilm maturation are affected when quorum sensing pathways are inhibited. In this study, we examined the effects of mutations in the cepIR and cciIR quorum-sensing systems of Burkholderia cenocepacia K56-2 with respect to biofilm attachment and antibiotic resistance. We also examined the role of the cepIR system in biofilm stability and structural development. Using the high-throughput MBEC assay system to produce multiple equivalent biofilms, the biomasses of both the cepI and cepR mutant biofilms, measured by crystal violet staining, were less than half of the value observed for the wild-type strain. Attachment was partially restored upon providing functional gene copies via multicopy expression vectors. Surprisingly, neither the cciI mutant nor the double cciI cepI mutant was deficient in attachment, and restoration of the cciI gene resulted in less attachment than for the mutants. Meanwhile, the cciR mutant did show a significant reduction in attachment, as did the cciR cepIR mutant. While there was no change in antibiotic susceptibility with the individual cepIR and cciIR mutants, the cepI cciI mutant biofilms were more sensitive to ciprofloxacin. A significant increase in sensitivity to removal by sodium dodecyl sulfate was seen for the cepI and cepR mutants. Flow cell analysis of the individual cepIR mutant biofilms indicated that they were both structurally and temporally impaired in attachment and development. These results suggest that biofilm structural defects might be present in quorum-sensing mutants of B. cenocepacia that affect the stability and resistance of the adherent cell mass, providing a basis for future studies to design preventative measures against biofilm formation in this species, an important lung pathogen of cystic fibrosis patients.  相似文献   

15.
16.
Quorum sensing in Serratia marcescens, which uses two types of signaling molecules–N-acyl homoserine lactones and furanosyl borate diester–play important regulatory roles in the synthesis of 2,3-butanediol and prodigiosin. In the hope of understanding the effect of quorum sensing on physiologic metabolism, we established two molecular strategies, one to express acyl-homoserine lactone hydrolase to inactivate AI-1 signaling molecule using an expression vector with lactose as the inducer and the other to mutate luxS gene with a suicide plasmid pUTKm2 to inhibit the synthesis of AI-2 signaling molecule.  相似文献   

17.
18.
Biofilm formation in Burkholderia cenocepacia has been shown to rely in part on acylhomoserine lactone-based quorum sensing. For many other bacterial species, it appears that both the initial adherence and the later stages of biofilm maturation are affected when quorum sensing pathways are inhibited. In this study, we examined the effects of mutations in the cepIR and cciIR quorum-sensing systems of Burkholderia cenocepacia K56-2 with respect to biofilm attachment and antibiotic resistance. We also examined the role of the cepIR system in biofilm stability and structural development. Using the high-throughput MBEC assay system to produce multiple equivalent biofilms, the biomasses of both the cepI and cepR mutant biofilms, measured by crystal violet staining, were less than half of the value observed for the wild-type strain. Attachment was partially restored upon providing functional gene copies via multicopy expression vectors. Surprisingly, neither the cciI mutant nor the double cciI cepI mutant was deficient in attachment, and restoration of the cciI gene resulted in less attachment than for the mutants. Meanwhile, the cciR mutant did show a significant reduction in attachment, as did the cciR cepIR mutant. While there was no change in antibiotic susceptibility with the individual cepIR and cciIR mutants, the cepI cciI mutant biofilms were more sensitive to ciprofloxacin. A significant increase in sensitivity to removal by sodium dodecyl sulfate was seen for the cepI and cepR mutants. Flow cell analysis of the individual cepIR mutant biofilms indicated that they were both structurally and temporally impaired in attachment and development. These results suggest that biofilm structural defects might be present in quorum-sensing mutants of B. cenocepacia that affect the stability and resistance of the adherent cell mass, providing a basis for future studies to design preventative measures against biofilm formation in this species, an important lung pathogen of cystic fibrosis patients.  相似文献   

19.

Background  

Burkholderia cenocepacia is recognized as opportunistic pathogen that can cause lung infections in cystic fibrosis patients. A hallmark of B. cenocepacia infections is the inability to eradicate the organism because of multiple intrinsic antibiotic resistance. As Resistance-Nodulation-Division (RND) efflux systems are responsible for much of the intrinsic multidrug resistance in Gram-negative bacteria, this study aims to identify RND genes in the B. cenocepacia genome and start to investigate their involvement into antimicrobial resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号