首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutualisms, beneficial interactions between species, are expected to be unstable because delivery of benefit likely involves fitness costs and selection should favour partners that deliver less benefit. Yet, mutualisms are common and persistent, even in the largely promiscuous associations between plants and soil microorganisms such as arbuscular mycorrhizal fungi. In two different systems, we demonstrate preferential allocation of photosynthate by host plants to the more beneficial of two AM fungal symbionts. This preferential allocation could allow the persistence of the mutualism if it confers sufficient advantage to the beneficial symbiont that it overcomes the cost of mutualism. We find that the beneficial fungus does increase in biomass when the fungi are spatially separated within the root system. However, in well-mixed fungal communities, non-beneficial fungi proliferate as expected from their reduced cost of mutualism. Our findings suggest that preferential allocation within spatially structured microbial communities can stabilize mutualisms between plants and root symbionts.  相似文献   

2.
The significant role of space in maintaining species coexistence and determining community structure and function is well established. However, community ecology studies have mainly focused on simple competition and predation systems, and the relative impact of positive interspecific interactions in shaping communities in a spatial context is not well understood. Here we employ a spatially explicit metacommunity model to investigate the effect of local dispersal on the structure and function of communities in which species are linked through an interaction web comprising mutualism, competition and exploitation. Our results show that function, diversity and interspecific interactions of locally linked communities undergo a phase transition with changes in the rate of species dispersal. We find that low spatial interconnectedness favors the spontaneous emergence of strongly mutualistic communities which are more stable but less productive and diverse. On the other hand, high spatial interconnectedness promotes local biodiversity at the expense of local stability and supports communities with a wide range of interspecific interactions. We argue that investigations of the relationship between spatial processes and the self-organization of complex interaction webs are critical to understanding the geographic structure of interactions in real landscapes.  相似文献   

3.
Coevolutionary clines across selection mosaics   总被引:6,自引:0,他引:6  
Abstract. Much of the dynamics of coevolution may be driven by the interplay between geographic variation in reciprocal selection (selection mosaics) and the homogenizing action of gene flow. We develop a genetic model of geographically structured coevolution in which gene flow links coevolving communities that may differ in both the direction and magnitude of reciprocal selection. The results show that geographically structured coevolution may lead to allele-frequency clines within both interacting species when fitnesses are spatially uniform or spatially heterogeneous. Furthermore, the results show that the behavior and shape of clines differ dramatically among different types of coevolutionary interaction. Antagonistic interactions produce dynamic clines that change shape rapidly through time, producing shifting patterns of local adaptation and maladaptation. Unlike antagonistic interactions, mutualisms generate stable equilibrium patterns that lead to fixed spatial patterns of adaptation. Interactions that vary between mutualism and antagonism produce both equilibrium and dynamic clines. Furthermore, the results demonstrate that these interactions may allow mutualisms to persist throughout the geographic range of an interaction, despite pockets of locally antagonistic selection. In all cases, the coevolved spatial patterns of allele frequencies are sensitive to the relative contributions of gene flow, selection, and overall habitat size, indicating that the appropriate scale for studies of geographically structured coevolution depends on the relative contributions of each of these factors.  相似文献   

4.
Ecological communities are structured in part by evolutionary interactions among their members. A number of recent studies incorporating phylogenetics into community ecology have upheld the paradigm that competition drives ecological divergence among species of the same guild. However, the role of other interspecific interactions, in particular positive interactions such as mutualism, remains poorly explored. We characterized the ecological niche and inferred phylogenetic relationships among members of a diverse community of neotropical Müllerian mimetic butterflies. Müllerian mimicry is one of the best studied examples of mutualism, in which unpalatable species converge in wing pattern locally to advertize their toxicity to predators. We provide evidence that mutualistic interactions can drive convergence along multiple ecological axes, outweighing both phylogeny and competition in shaping community structure. Our findings imply that ecological communities are adaptively assembled to a much greater degree than commonly suspected. In addition, our results show that phenotype and ecology are strongly linked and support the idea that mimicry can cause ecological speciation through multiple cascading effects on species' biology.  相似文献   

5.
The response of individual species to climate change may alter the composition and dynamics of communities. Here, we show that the impacts of environmental change on communities can depend on the nature of the interspecific interactions: mutualistic communities typically respond differently than commensalistic or parasitic communities. We model and analyse the geographic range shifting of metapopulations of two interacting species – a host and an obligate species. Different types of interspecific interactions are implemented by modifying local extinction rates according to the presence/absence of the other species. We distinguish and compare three fundamentally different community types: mutualism, commensalism and parasitism. We find that community dynamics during geographic range shifting critically depends on the type of interspecific interactions. Parasitic interactions exacerbate the negative effect of environmental change whereas mutualistic interactions only partly compensate it. Commensalistic interactions exhibit an intermediate response. Based on these model outcomes, we predict that parasitic species interactions may be more vulnerable to geographic range shifting than commensalistic or mutualistic ones. However, we observe that when climate stabilises following a period of change, the rate of community recovery is largely independent of the type of interspecific interactions. These results emphasize that communities respond delicately to environmental change, and that local interspecific interactions can affect range shifting communities at large spatial scales.  相似文献   

6.
The relationship between structure and stability in ecological networks and the effect of spatial dynamics on natural communities have both been major foci of ecological research for decades. Network research has traditionally focused on a single interaction type at a time (e.g. food webs, mutualistic networks). Networks comprising different types of interactions have recently started to be empirically characterized. Patterns observed in these networks and their implications for stability demand for further theoretical investigations. Here, we employed a spatially explicit model to disentangle the effects of mutualism/antagonism ratios in food web dynamics and stability. We found that increasing levels of plant-animal mutualistic interactions generally resulted in more stable communities. More importantly, increasing the proportion of mutualistic vs. antagonistic interactions at the base of the food web affects different aspects of ecological stability in different directions, although never negatively. Stability is either not influenced by increasing mutualism—for the cases of population stability and species’ spatial distributions—or is positively influenced by it—for spatial aggregation of species. Additionally, we observe that the relative increase of mutualistic relationships decreases the strength of biotic interactions in general within the ecological network. Our work highlights the importance of considering several dimensions of stability simultaneously to understand the dynamics of communities comprising multiple interaction types.  相似文献   

7.
Mutualisms are ubiquitous in nature, provide important ecosystem services, and involve many species of interest for conservation. Theoretical progress on the population dynamics of mutualistic interactions, however, comparatively lagged behind that of trophic and competitive interactions, leading to the impression that ecologists still lack a generalized framework to investigate the population dynamics of mutualisms. Yet, over the last 90 years, abundant theoretical work has accumulated, ranging from abstract to detailed. Here, we review and synthesize historical models of two‐species mutualisms. We find that population dynamics of mutualisms are qualitatively robust across derivations, including levels of detail, types of benefit, and inspiring systems. Specifically, mutualisms tend to exhibit stable coexistence at high density and destabilizing thresholds at low density. These dynamics emerge when benefits of mutualism saturate, whether due to intrinsic or extrinsic density dependence in intraspecific processes, interspecific processes, or both. We distinguish between thresholds resulting from Allee effects, low partner density, and high partner density, and their mathematical and conceptual causes. Our synthesis suggests that there exists a robust population dynamic theory of mutualism that can make general predictions.  相似文献   

8.
The structure of mutualistic networks provides clues to processes shaping biodiversity [1-10]. Among them, interaction intimacy, the degree of biological association between partners, leads to differences in specialization patterns [4, 11] and might affect network organization [12]. Here, we investigated potential consequences of interaction intimacy for the structure and coevolution of mutualistic networks. From observed processes of selection on mutualistic interactions, it is expected that symbiotic interactions (high-interaction intimacy) will form species-poor networks characterized by compartmentalization [12, 13], whereas nonsymbiotic interactions (low intimacy) will lead to species-rich, nested networks in which there is a core of generalists and specialists often interact with generalists [3, 5, 7, 12, 14]. We demonstrated an association between interaction intimacy and structure in 19 ant-plant mutualistic networks. Through numerical simulations, we found that network structure of different forms of mutualism affects evolutionary change in distinct ways. Change in one species affects primarily one mutualistic partner in symbiotic interactions but might affect multiple partners in nonsymbiotic interactions. We hypothesize that coevolution in symbiotic interactions is characterized by frequent reciprocal changes between few partners, but coevolution in nonsymbiotic networks might show rare bursts of changes in which many species respond to evolutionary changes in a single species.  相似文献   

9.
The present study theoretically examines the process by which interspecific mutualism is established with trait matching. The mathematical model includes joint evolution of the mutualistic relationship between two species and regulation of variation of interaction in one-dimensional trait space, assuming abiotic directional selection. The model considers three types of regulation: homeostasis against environmental variation, developmental stability, and acceptability of dissimilar mutualism partners (mutualism kernel). Mainly focusing on the developmental stability, the analysis indicates that the mutualism can evolve when (1) higher levels of developmental stability are more intensively degenerated by deleterious mutations, (2) the basal rate of deleterious mutation is low, (3) trait expression is less influenced by environmental factors, and (4) the specificity of mutualism is high. It also shows that the evolution of developmental stability can promote the evolution of mutualism with trait matching when the deleterious mutation bias disappears at a certain level of developmental instability. Evolution of homeostasis and mutualism kernel can be discussed in the similar way because of formal similarities in the model. In plant–pollinator interactions, it has recently been proposed that evolutionary increments of developmental stability in mutualistic traits might promote plant diversification. The present results partly support this hypothesis with respect to the evolutionary relationship between mutualism and developmental stability.  相似文献   

10.
The Benefits of Mutualism: A Conceptual Framework   总被引:6,自引:0,他引:6  
There are three general mechanisms by which phenotypic benefits are transferred between unrelated organisms. First, one organism may purloin benefits from another by preying on or parasitizing the other organism. Second, one organism may enjoy benefits that are incidental to or a by-product of the self-serving traits of another organism. Third, an organism may invest in another organism if that investment produces return benefits which outweigh the cost of the investment. Interactions in which both parties gain a net benefit are mutualistic. The three mechanisms by which benefits are transferred between organisms can be combined in pairs to produce six possible kinds of original or 'basal' mutualisms that can arise from an amutualistic state. A review of the literature suggests that most or all interspecific mutualism have origins in three of the six possible kinds of basal mutualism. Each of these three basal mutualisms have byproduct benefits flowing in at least one direction. The transfer of by-product benefits and investment are common to both intra- and interspecific mutualisms, so that some interspecific mutualisms have intraspecific analogs. A basal mutualism may evolve to the point where each party invests in the other, sometimes obscuring the nature of the original interaction along the way. Two prominent models for the evolution of mutualism do not include by-product benefits: Roughgarden's model for the evolution of the damsel-fish anemone mutualism and the 'Tit-for-Tat' model of reciprocity. Using the conceptual framework presented here, including in particular by-product benefits, I have shown how it is possible to construct more parsimonious alternatives to both models.  相似文献   

11.
Mutualism is a net positive interaction that includes varying degrees of both costs and benefits. Because tension between the costs and benefits of mutualism can lead to evolutionary instability, identifying mechanisms that regulate investment between partners is critical to understanding the evolution and maintenance of mutualism. Recently, studies have highlighted the importance of interspecific signalling as one mechanism for regulating investment between mutualist partners. Here, we provide evidence for interspecific alarm signalling in an insect protection mutualism and we demonstrate a functional link between this acoustic signalling and efficacy of protection. The treehopper Publilia concava Say (Hemiptera: Membracidae) is an insect that provides ants with a carbohydrate-rich excretion called honeydew in return for protection from predators. Adults of this species produce distinct vibrational signals in the context of predator encounters. In laboratory trials, putative alarm signal production significantly increased following initial contact with ladybeetle predators (primarily Harmonia axyridis Pallas, Coleoptera: Coccinellidae), but not following initial contact with ants. In field trials, playback of a recorded treehopper alarm signal resulted in a significant increase in both ant activity and the probability of ladybeetle discovery by ants relative to both silence and treehopper courtship signal controls. Our results show that P. concava treehoppers produce alarm signals in response to predator threat and that this signalling can increase effectiveness of predator protection by ants.  相似文献   

12.
Studying how the fitness benefits of mutualism differ among a wide range of partner genotypes, and at multiple spatial scales, can shed light on the processes that maintain mutualism and structure coevolutionary interactions. Using legumes and rhizobia from three natural populations, I studied the symbiotic fitness benefits for both partners in 108 plant maternal family by rhizobium strain combinations. Genotype‐by‐genotype (G × G) interactions among local genotypes and among partner populations determined, in part, the benefits of mutualism for both partners; for example, the fitness effects of particular rhizobium strains ranged from uncooperative to mutualistic depending on the plant family. Correlations between plant and rhizobium fitness benefits suggest a trade off, and therefore a potential conflict, between the interests of the two partners. These results suggest that legume–rhizobium mutualisms are dynamic at multiple spatial scales, and that strictly additive models of mutualism benefits may ignore dynamics potentially important to both the maintenance of genetic variation and the generation of geographic patterns in coevolutionary interactions.  相似文献   

13.
Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant–plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners'' investments in a widespread ant–plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism.  相似文献   

14.
When two species form a mutualistic association, the degree of control that each has over the interaction may be pivotal in determining the relative benefit each obtains. We incorporate the capacity for partner choice into a model of mutualism based on the exchange of goods and/or services, where one guild of mutualists plays the role of proposer (proposing a price at which the goods and/or services will be exchanged) and the other plays the role of responder (accepting or rejecting the deal). We show how the payoff structure in this scenario and other closely related ones correspond to the ultimatum and demand games of economics. In the model, there are both costs and benefits to a guild whose players have control over interactions. Control over interactions in the sense of being able to exercise partner choice can benefit a guild by selecting for mutualism in its partners, but is most effective in selecting against moderately exploitative partners, and so can give highly exploitative partners an advantage. This can generate dynamics similar to taxon cycles or those seen in models with competition-colonization tradeoffs, wherein increasingly more mutualistic partners (acting as superior competitors) are selected for up to a tipping point, at which highly exploitative strategies (akin to superior colonizers) gain an advantage. Control over interactions in the sense of being able to appropriate ‘surplus’ payoffs in each interaction, which is selected for within-guild and is equivalent to playing the role of responders, selects against high demands (and so for mutualism) in the guild with control. Combining the two mechanisms, a high degree of mutualism in both guilds and coexistence of more mutualistic and more exploitative strategies within each are both consistent with control over the interaction being highly skewed toward one side that does what is in its own short-term interests.  相似文献   

15.
Animal‐mediated indirect interactions play a significant role in maintaining the biodiversity of plant communities. Less known is whether interspecific synchrony of seed rain can alter the indirect interactions of sympatric tree species. We assessed the seed dispersal success by tracking the fates of 21 600 tagged seeds from six paired sympatric tree species in both monospecific and mixed plots across 4 successive years in a subtropical forest. We found that apparent mutualism was associated with the interspecific synchrony of seed rain both seasonally and yearly, whereas apparent competition or apparent predation was associated with interspecific asynchrony of seed rain either seasonally or yearly. We did not find consistent associations of indirect interactions with seed traits. Our study suggests that the interspecific synchrony of seed rain plays a key role in the formation of animal‐mediated indirect interactions, which, in turn, may alter the seasonal or yearly seed rain schedules of sympatric tree species.  相似文献   

16.
Microbes are predominantly found in surface-attached and spatially structured polymicrobial communities. Within these communities, microbial cells excrete a wide range of metabolites, setting the stage for interspecific metabolic interactions. The links, however, between metabolic and ecological interactions (functional relationships), and species spatial organization (structural relationships) are still poorly understood. Here, we use an individual-based modelling framework to simulate the growth of a two-species surface-attached community where food (resource) is traded for detoxification (service) and investigate how metabolic constraints of individual species shape the emergent structural and functional relationships of the community. We show that strong metabolic interdependence drives the emergence of mutualism, robust interspecific mixing, and increased community productivity. Specifically, we observed a striking and highly stable emergent lineage branching pattern, generating a persistent lineage mixing that was absent when the metabolic exchange was removed. These emergent community properties are driven by demographic feedbacks, such that aid from neighbouring cells directly enhances focal cell growth, which in turn feeds back to neighbour fecundity. In contrast, weak metabolic interdependence drives conflict (exploitation or competition), and in turn greater interspecific segregation. Together, these results support the idea that species structural and functional relationships represent the net balance of metabolic interdependencies.  相似文献   

17.
Mutualisms in a changing world: an evolutionary perspective   总被引:1,自引:0,他引:1  
Ecology Letters (2010) 13: 1459-1474 ABSTRACT: There is growing concern that rapid environmental degradation threatens mutualistic interactions. Because mutualisms can bind species to a common fate, mutualism breakdown has the potential to expand and accelerate effects of global change on biodiversity loss and ecosystem disruption. The current focus on the ecological dynamics of mutualism under global change has skirted fundamental evolutionary issues. Here, we develop an evolutionary perspective on mutualism breakdown to complement the ecological perspective, by focusing on three processes: (1) shifts from mutualism to antagonism, (2) switches to novel partners and (3) mutualism abandonment. We then identify the evolutionary factors that may make particular classes of mutualisms especially susceptible or resistant to breakdown and discuss how communities harbouring mutualisms may be affected by these evolutionary responses. We propose a template for evolutionary research on mutualism resilience and identify conservation approaches that may help conserve targeted mutualisms in the face of environmental change.  相似文献   

18.
The foundational concepts behind the persistence of ecological communities have been based on two ecological properties: dynamical stability and feasibility. The former is typically regarded as the capacity of a community to return to an original equilibrium state after a perturbation in species abundances and is usually linked to the strength of interspecific interactions. The latter is the capacity to sustain positive abundances on all its constituent species and is linked to both interspecific interactions and species demographic characteristics. Over the last 40 years, theoretical research in ecology has emphasized the search for conditions leading to the dynamical stability of ecological communities, while the conditions leading to feasibility have been overlooked. However, thus far, we have no evidence of whether species interactions are more conditioned by the community''s need to be stable or feasible. Here, we introduce novel quantitative methods and use empirical data to investigate the consequences of species interactions on the dynamical stability and feasibility of mutualistic communities. First, we demonstrate that the more nested the species interactions in a community are, the lower the mutualistic strength that the community can tolerate without losing dynamical stability. Second, we show that high feasibility in a community can be reached either with high mutualistic strength or with highly nested species interactions. Third, we find that during the assembly process of a seasonal pollinator community located at The Zackenberg Research Station (northeastern Greenland), a high feasibility is reached through the nested species interactions established between newcomer and resident species. Our findings imply that nested mutualistic communities promote feasibility over stability, which may suggest that the former can be key for community persistence.  相似文献   

19.
Explaining mutualistic cooperation between species remains a major challenge for evolutionary biology. Why cooperate if defection potentially reaps greater benefits? It is commonly assumed that spatial structure (limited dispersal) aligns the interests of mutualistic partners. But does spatial structure consistently promote cooperation? Here, we formally model the role of spatial structure in maintaining mutualism. We show theoretically that spatial structure can actually disfavor cooperation by limiting the suite of potential partners. The effect of spatial structuring depends on the scale (fine or coarse level) at which hosts reward their partners. We then test our predictions by using molecular methods to track the abundance of competing, closely related, cooperative, and less cooperative arbuscular mycorrhizal (AM) fungal symbionts on host roots over multiple generations. We find that when spatial structure is reduced by mixing soil, the relative success of the more cooperative AM fungal species increases. This challenges previous suggestions that high spatial structuring is critical for stabilizing cooperation in the mycorrhizal mutualism. More generally, our results show, both theoretically and empirically, that contrary to expectations, spatial structuring can select against cooperation.  相似文献   

20.
Ecological communities are structured by competitive, predatory, mutualistic and parasitic interactions combined with chance events. Separating deterministic from stochastic processes is possible, but finding statistical evidence for specific biological interactions is challenging. We attempt to solve this problem for ant communities nesting in epiphytic bird’s nest ferns (Asplenium nidus) in Borneo’s lowland rainforest. By recording the frequencies with which each and every single ant species occurred together, we were able to test statistically for patterns associated with interspecific competition. We found evidence for competition, but the resulting co-occurrence pattern was the opposite of what we expected. Rather than detecting species segregation—the classical hallmark of competition—we found species aggregation. Moreover, our approach of testing individual pairwise interactions mostly revealed spatially positive rather than negative associations. Significant negative interactions were only detected among large ants, and among species of the subfamily Ponerinae. Remarkably, the results from this study, and from a corroborating analysis of ant communities known to be structured by competition, suggest that competition within the ants leads to species aggregation rather than segregation. We believe this unexpected result is linked with the displacement of species following asymmetric competition. We conclude that analysing co-occurrence frequencies across complete species assemblages, separately for each species, and for each unique pairwise combination of species, represents a subtle yet powerful way of detecting structure and compartmentalisation in ecological communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号