首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in sequencing technologies provide the means for identifying copy number variation (CNV) at an unprecedented resolution. A single next-generation sequencing experiment offers several features that can be used to detect CNV, yet current methods do not incorporate all available signatures into a unified model. cnvHiTSeq is an integrative probabilistic method for CNV discovery and genotyping that jointly analyzes multiple features at the population level. By combining evidence from complementary sources, cnvHiTSeq achieves high genotyping accuracy and a substantial improvement in CNV detection sensitivity over existing methods, while maintaining a low false discovery rate. cnvHiTSeq is available at http://sourceforge.net/projects/cnvhitseq  相似文献   

2.
3.
4.
5.
Storage and transmission of the data produced by modern DNA sequencing instruments has become a major concern, which prompted the Pistoia Alliance to pose the SequenceSqueeze contest for compression of FASTQ files. We present several compression entries from the competition, Fastqz and Samcomp/Fqzcomp, including the winning entry. These are compared against existing algorithms for both reference based compression (CRAM, Goby) and non-reference based compression (DSRC, BAM) and other recently published competition entries (Quip, SCALCE). The tools are shown to be the new Pareto frontier for FASTQ compression, offering state of the art ratios at affordable CPU costs. All programs are freely available on SourceForge. Fastqz: https://sourceforge.net/projects/fastqz/, fqzcomp: https://sourceforge.net/projects/fqzcomp/, and samcomp: https://sourceforge.net/projects/samcomp/.  相似文献   

6.
We developed a novel software tool, EXCAVATOR, for the detection of copy number variants (CNVs) from whole-exome sequencing data. EXCAVATOR combines a three-step normalization procedure with a novel heterogeneous hidden Markov model algorithm and a calling method that classifies genomic regions into five copy number states. We validate EXCAVATOR on three datasets and compare the results with three other methods. These analyses show that EXCAVATOR outperforms the other methods and is therefore a valuable tool for the investigation of CNVs in largescale projects, as well as in clinical research and diagnostics. EXCAVATOR is freely available at http://sourceforge.net/projects/excavatortool/.  相似文献   

7.
Detection of somatic variation using sequence from disease-control matched data sets is a critical first step. In many cases including cancer, however, it is hard to isolate pure disease tissue, and the impurity hinders accurate mutation analysis by disrupting overall allele frequencies. Here, we propose a new method, Virmid, that explicitly determines the level of impurity in the sample, and uses it for improved detection of somatic variation. Extensive tests on simulated and real sequencing data from breast cancer and hemimegalencephaly demonstrate the power of our model. A software implementation of our method is available at http://sourceforge.net/projects/virmid/.  相似文献   

8.
We study the detection of mutations, sequencing errors, and homologous recombination events (HREs) in a set of closely related microbial genomes. We base the model on single nucleotide polymorphisms (SNPs) and break the genomes into blocks to handle the rearrangement problem. Then we apply a dynamic programming algorithm to model whether changes within each block are likely a result of mutations, sequencing errors, or HREs. Results from simulation experiments show that we can detect 31%–61% of HREs and the precision of our detection is about 48%–90% depending on the rates of mutation and missing data. The HREfinder software for predicting HREs in a set of whole genomes is available as open source (http://sourceforge.net/projects/hrefinder/).  相似文献   

9.
The presence of duplicates introduced by PCR amplification is a major issue in paired short reads from next-generation sequencing platforms. These duplicates might have a serious impact on research applications, such as scaffolding in whole-genome sequencing and discovering large-scale genome variations, and are usually removed. We present FastUniq as a fast de novo tool for removal of duplicates in paired short reads. FastUniq identifies duplicates by comparing sequences between read pairs and does not require complete genome sequences as prerequisites. FastUniq is capable of simultaneously handling reads with different lengths and results in highly efficient running time, which increases linearly at an average speed of 87 million reads per 10 minutes. FastUniq is freely available at http://sourceforge.net/projects/fastuniq/.  相似文献   

10.
The study of cell-population heterogeneity in a range of biological systems, from viruses to bacterial isolates to tumor samples, has been transformed by recent advances in sequencing throughput. While the high-coverage afforded can be used, in principle, to identify very rare variants in a population, existing ad hoc approaches frequently fail to distinguish true variants from sequencing errors. We report a method (LoFreq) that models sequencing run-specific error rates to accurately call variants occurring in <0.05% of a population. Using simulated and real datasets (viral, bacterial and human), we show that LoFreq has near-perfect specificity, with significantly improved sensitivity compared with existing methods and can efficiently analyze deep Illumina sequencing datasets without resorting to approximations or heuristics. We also present experimental validation for LoFreq on two different platforms (Fluidigm and Sequenom) and its application to call rare somatic variants from exome sequencing datasets for gastric cancer. Source code and executables for LoFreq are freely available at http://sourceforge.net/projects/lofreq/.  相似文献   

11.
Mobile elements are major drivers in changing genomic architecture and can cause disease. The detection of mobile elements is hindered due to the low mappability of their highly repetitive sequences. We have developed an algorithm, called Mobster, to detect non-reference mobile element insertions in next generation sequencing data from both whole genome and whole exome studies. Mobster uses discordant read pairs and clipped reads in combination with consensus sequences of known active mobile elements. Mobster has a low false discovery rate and high recall rate for both L1 and Alu elements. Mobster is available at http://sourceforge.net/projects/mobster.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0488-x) contains supplementary material, which is available to authorized users.  相似文献   

12.
ArrayPlex is a software package that centrally provides a large number of flexible toolsets useful for functional genomics, including microarray data storage, quality assessments, data visualization, gene annotation retrieval, statistical tests, genomic sequence retrieval and motif analysis. It uses a client-server architecture based on open source components, provides graphical, command-line, and programmatic access to all needed resources, and is extensible by virtue of a documented application programming interface. ArrayPlex is available at http://sourceforge.net/projects/arrayplex/.  相似文献   

13.
14.
Next-generation DNA sequencing platforms provide exciting new possibilities for in vitro genetic analysis of functional nucleic acids. However, the size of the resulting data sets presents computational and analytical challenges. We present an open-source software package that employs a locality-sensitive hashing algorithm to enumerate all unique sequences in an entire Illumina sequencing run (∼108 sequences). The algorithm results in quasilinear time processing of entire Illumina lanes (∼107 sequences) on a desktop computer in minutes. To facilitate visual analysis of sequencing data, the software produces three-dimensional scatter plots similar in concept to Sewall Wright and John Maynard Smith’s adaptive or fitness landscape. The software also contains functions that are particularly useful for doped selections such as mutation frequency analysis, information content calculation, multivariate statistical functions (including principal component analysis), sequence distance metrics, sequence searches and sequence comparisons across multiple Illumina data sets. Source code, executable files and links to sample data sets are available at http://www.sourceforge.net/projects/sewal.  相似文献   

15.
Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in ‘targeted’ alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/.  相似文献   

16.
Next generation sequencing (NGS) of PCR amplicons is a standard approach to detect genetic variations in personalized medicine such as cancer diagnostics. Computer programs used in the NGS community often miss insertions and deletions (indels) that constitute a large part of known human mutations. We have developed HeurAA, an open source, heuristic amplicon aligner program. We tested the program on simulated datasets as well as experimental data from multiplex sequencing of 40 amplicons in 12 oncogenes collected on a 454 Genome Sequencer from lung cancer cell lines. We found that HeurAA can accurately detect all indels, and is more than an order of magnitude faster than previous programs. HeurAA can compare reads and reference sequences up to several thousand base pairs in length, and it can evaluate data from complex mixtures containing reads of different gene-segments from different samples. HeurAA is written in C and Perl for Linux operating systems, the code and the documentation are available for research applications at http://sourceforge.net/projects/heuraa/  相似文献   

17.

Background

Phylogenetic-based classification of M. tuberculosis and other bacterial genomes is a core analysis for studying evolutionary hypotheses, disease outbreaks and transmission events. Whole genome sequencing is providing new insights into the genomic variation underlying intra- and inter-strain diversity, thereby assisting with the classification and molecular barcoding of the bacteria. One roadblock to strain investigation is the lack of user-interactive solutions to interrogate and visualise variation within a phylogenetic tree setting.

Results

We have developed a web-based tool called PhyTB (http://pathogenseq.lshtm.ac.uk/phytblive/index.php) to assist phylogenetic tree visualisation and identification of M. tuberculosis clade-informative polymorphism. Variant Call Format files can be uploaded to determine a sample position within the tree. A map view summarises the geographical distribution of alleles and strain-types. The utility of the PhyTB is demonstrated on sequence data from 1,601 M. tuberculosis isolates.

Conclusion

PhyTB contextualises M. tuberculosis genomic variation within epidemiological, geographical and phylogenic settings. Further tool utility is possible by incorporating large variants and phenotypic data (e.g. drug-resistance profiles), and an assessment of genotype-phenotype associations. Source code is available to develop similar websites for other organisms (http://sourceforge.net/projects/phylotrack).  相似文献   

18.

Motivation

16S rDNA hypervariable tag sequencing has become the de facto method for accessing microbial diversity. Illumina paired-end sequencing, which produces two separate reads for each DNA fragment, has become the platform of choice for this application. However, when the two reads do not overlap, existing computational pipelines analyze data from read separately and underutilize the information contained in the paired-end reads.

Results

We created a workflow known as Illinois Mayo Taxon Organization from RNA Dataset Operations (IM-TORNADO) for processing non-overlapping reads while retaining maximal information content. Using synthetic mock datasets, we show that the use of both reads produced answers with greater correlation to those from full length 16S rDNA when looking at taxonomy, phylogeny, and beta-diversity.

Availability and Implementation

IM-TORNADO is freely available at http://sourceforge.net/projects/imtornado and produces BIOM format output for cross compatibility with other pipelines such as QIIME, mothur, and phyloseq.  相似文献   

19.
Protein sequences predicted from metagenomic datasets are annotated by identifying their homologs via sequence comparisons with reference or curated proteins. However, a majority of metagenomic protein sequences are partial-length, arising as a result of identifying genes on sequencing reads or on assembled nucleotide contigs, which themselves are often very fragmented. The fragmented nature of metagenomic protein predictions adversely impacts homology detection and, therefore, the quality of the overall annotation of the dataset. Here we present a novel algorithm called GRASP that accurately identifies the homologs of a given reference protein sequence from a database consisting of partial-length metagenomic proteins. Our homology detection strategy is guided by the reference sequence, and involves the simultaneous search and assembly of overlapping database sequences. GRASP was compared to three commonly used protein sequence search programs (BLASTP, PSI-BLAST and FASTM). Our evaluations using several simulated and real datasets show that GRASP has a significantly higher sensitivity than these programs while maintaining a very high specificity. GRASP can be a very useful program for detecting and quantifying taxonomic and protein family abundances in metagenomic datasets. GRASP is implemented in GNU C++, and is freely available at http://sourceforge.net/projects/grasp-release.  相似文献   

20.
Transposable elements (TEs) constitute the most active, diverse and ancient component in a broad range of genomes. Complete understanding of genome function and evolution cannot be achieved without a thorough understanding of TE impact and biology. However, in-depth analysis of TEs still represents a challenge due to the repetitive nature of these genomic entities. In this work, we present a broadly applicable and flexible tool: T-lex2. T-lex2 is the only available software that allows routine, automatic and accurate genotyping of individual TE insertions and estimation of their population frequencies both using individual strain and pooled next-generation sequencing data. Furthermore, T-lex2 also assesses the quality of the calls allowing the identification of miss-annotated TEs and providing the necessary information to re-annotate them. The flexible and customizable design of T-lex2 allows running it in any genome and for any type of TE insertion. Here, we tested the fidelity of T-lex2 using the fly and human genomes. Overall, T-lex2 represents a significant improvement in our ability to analyze the contribution of TEs to genome function and evolution as well as learning about the biology of TEs. T-lex2 is freely available online at http://sourceforge.net/projects/tlex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号