共查询到17条相似文献,搜索用时 12 毫秒
1.
《MABS-AUSTIN》2013,5(4):532-541
A major limitation to the application of therapeutic monoclonal antibodies (mAbs) is their reduced in vivo efficacy compared with the high efficacy measured in vitro. Effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) are dramatically reduced in vivo by the presence of high amounts of endogenous IgG in the serum. Recent studies have shown that modification of the glycosylation moieties attached to the Fc part of the mAb can enhance binding affinity to FcγRIIIα receptors on natural killer cells and thus may counteract the reduced in vivo efficacy. In the present study, a humanized IgG1/κ monoclonal antibody recognizing the tumor-associated carbohydrate antigen Lewis Y was stably produced in a moss expression system that allows glyco-engineering. The glyco-modified mAb (designated MB314) showed a highly homogeneous N-glycosylation pattern lacking core-fucose. A side-by-side comparison to its parental counterpart produced in conventional mammalian cell-culture (MB311, formerly known as IGN311) by fluorescence-activated cell sorting analysis confirmed that the target specificity of MB314 is similar to that of MB311. In contrast, ADCC effector function of MB314 was increased up to 40-fold whereas complement dependent cytotoxicity activity was decreased 5-fold. Notably, a release of immunostimulatory cytokines, including interferon γ, monocyte chemotactic protein-1 (MCP-1), interleukin-6 and tumor necrosis factor (TNF) was particularly induced with the glyco-modified antibody. TNF release was associated with CD14+ cells, indicating activation of monocytes. 相似文献
2.
Michel Awwad Phoebe G. Strome Steven C. Gilman Helena R. Axelrod 《Cancer immunology, immunotherapy : CII》1994,38(1):23-30
Site-specific attachment of metal chelators or cytotoxic agents to the carbohydrate region of monoclonal antibodies results in clinically useful immunoconjugates [Doerr et al. (1991) Ann Surg 214: 118, Wynant et al. (1991) Prostate 18: 229]. Since the capacity of monoclonal antibodies (mAb) to mediate tumor cell lysis via antibody-dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) may accentuate the therapeutic effectiveness of immunoconjugates, we determined whether site-specific modification of mAb carbohydrates interfered with these functions. The chemical modifications examined consisted of periodate oxidation and subsequent conjugation to either a peptide linker/chelator (GYK-DTPA) or a cytotoxic drug (doxorubicin adipic dihydrazide). mAb-associated carbohydrates were also modified metabolically by incubating hybridoma cells in the presence of a glucosidase inhibitor deoxymannojirimycin to produce high-mannose antibody. All four forms (unaltered, oxidized, conjugated and high-mannose) of murine mAb OVB-3 mediated tumor cell lysis via CDC. Similarly, equivalent ADCC was observed with native and conjugated forms of mAb OVB-3 and EGFR.1. ADCC was achieved with different murine effector cells such as naive (NS), poly (I*C)- and lipopolysaccharide-stimulated (SS) spleen cells, orCorynebacterium-parvum-elicited peritoneal cells (PEC). All murine effector cell types mediated tumor cell lysis but differed in potency such that PEC>SS>NS. Excellent ADCC activity was also demonstrable by human peripheral blood mononuclear cells with OVB-3-GYK-DTPA and high-mannose OVB-3 mAb. ADCC activity was detectable in vivo: both native and conjugated OVB-3 inhibited growth of OVCAR-3 xenografts in nude mice primed withC. parvum. In conclusion, modification of mAb carbohydrates did not compromise their in vivo or in vitro biological functions. Therefore, combination therapy using immunomodulators to enhance the effector functions of site-specific immunoconjugates could be seriously contemplated. 相似文献
3.
Characterizing the effect of multiple Fc glycan attributes on the effector functions and FcγRIIIa receptor binding activity of an IgG1 antibody 下载免费PDF全文
Danielle Pace Nathaniel Lewis Tina Wu Ron Gillespie Dan Leiske Jyoti Velayudhan Amanda Rohrbach Lisa Connell‐Crowley 《Biotechnology progress》2016,32(5):1181-1192
N‐linked Fc glycosylation of IgG1 monoclonal antibody therapeutics can directly influence their mechanism of action by impacting IgG effector functions such as antibody‐dependent cell‐mediated cytotoxicity (ADCC) and complement‐dependent cytotoxicity (CDC). Therefore, identification and detailed characterization of Fc glycan critical quality attributes (CQAs) provides important information for process design and control. A two‐step approach was used to identify and characterize the Fc glycan CQAs for an IgG1 Mab with effector function. First, single factor experiments were performed to identify glycan critical quality attributes that influence ADCC and CDC activities. Next, a full‐factorial design of experiment (DOE) to characterize the possible interactions and relative effect of these three glycan species on ADCC, CDC, and FcγRIIIa binding was employed. Additionally, the DOE data were used to develop models to predict ADCC, CDC, and FcγRIIIa binding of a given configuration of the three glycan species for this IgG1 molecule. The results demonstrate that for ADCC, afuco mono/bi has the largest effect, followed by HM and β‐gal, while FcγRIIIa binding is affected by afuco mono/bi and β‐gal. CDC, in contrast, is affected by β‐gal only. This type of glycan characterization and modeling can provide valuable information for development, manufacturing support and process improvements for IgG products that require effector function for efficacy. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1181–1192, 2016 相似文献
4.
Sandra Prior Simon E. Hufton Bernard Fox Thomas Dougall Peter Rigsby Adrian Bristow 《MABS-AUSTIN》2018,10(1):129-142
The intrinsic complexity and heterogeneity of therapeutic monoclonal antibodies is built into the biosimilarity paradigm where critical quality attributes are controlled in exhaustive comparability studies with the reference medicinal product. The long-term success of biosimilars will depend on reassuring healthcare professionals and patients of consistent product quality, safety and efficacy. With this aim, the World Health Organization has endorsed the need for public bioactivity standards for therapeutic monoclonal antibodies in support of current controls. We have developed a candidate international potency standard for rituximab that was evaluated in a multi-center collaborative study using participants' own qualified Fc-effector function and cell-based binding bioassays. Dose-response curve model parameters were shown to reflect similar behavior amongst rituximab preparations, albeit with some differences in potency. In the absence of a common reference standard, potency estimates were in poor agreement amongst laboratories, but the use of the candidate preparation significantly reduced this variability. Our results suggest that the candidate rituximab standard can support bioassay performance and improve data harmonization, which when implemented will promote consistency of rituximab products over their life-cycles. This data provides the first scientific evidence that a classical standardization exercise allowing traceability of bioassay data to an international standard is also applicable to rituximab. However, we submit that this new type of international standard needs to be used appropriately and its role not to be mistaken with that of the reference medicinal product. 相似文献
5.
Glycosylation of the conserved asparagine residue in each heavy chain of IgG in the CH2 domain is known as N-glycosylation. It is one of the most common post-translational modifications and important critical quality attributes of monoclonal antibody (mAb) therapeutics. Various studies have demonstrated the effects of the Fc N-glycosylation on safety, Fc effector functions, and pharmacokinetics, both dependent and independent of neonatal Fc receptor (FcRn) pathway. However, separation of various glycoforms to investigate the biological and functional relevance of glycosylation is a major challenge, and existing studies often discuss the overall impact of N-glycans, without considering the individual contributions of each glycoform when evaluating mAbs with highly heterogeneous distributions. In this study, chemoenzymatic glycoengineering incorporating an endo-β-N-acetylglucosaminidase (ENGase) EndoS2 and its mutant with transglycosylation activity was used to generate mAb glycoforms with highly homogeneous and well-defined N-glycans to better understand and precisely evaluate the effect of each N-glycan structure on Fc effector functions and protein stability. We demonstrated that the core fucosylation, non-reducing terminal galactosylation, sialylation, and mannosylation of IgG1 mAb N-glycans impact not only on FcγRIIIa binding, antibody-dependent cell-mediated cytotoxicity, and C1q binding, but also FcRn binding, thermal stability and propensity for protein aggregation. 相似文献
6.
《Cytokine》2013,61(3):828-837
The administration of several monoclonal antibodies (mAbs) to humans has been associated with acute adverse events characterized by clinically significant release of cytokines in the blood. The limited predictive value of toxicology species in this field has triggered intensive research to establish human in vitro assays using peripheral blood mononuclear cells or blood to predict cytokine release in humans. A thorough characterization of these assays is required to understand their predictive value for hazard identification and risk assessment in an optimal manner, and to highlight potential limitations of individual assay formats.We have characterized a whole human blood cytokine release assay with only minimal dilution by the test antibodies (95% v/v blood) in aqueous presentation format, an assay which has so far received less attention in the scientific world with respect to the evaluation of its suitability to predict cytokine release in humans. This format was compared with a human PBMC assay with immobilized mAbs presentation already well-characterized by others. Cytokine secretion into plasma or cell culture supernatants after 24 h incubation with the test mAbs (anti-CD28 superagonist TGN1412-like material (TGN1412L), another anti-CD28 superagonistic mAb (ANC28.1), a T-cell depleting mAb (Orthoclone™), and a TGN1412 isotype-matched control (Tysabri™) not associated with clinically-relevant cytokine release) was detected by a multiplex assay based on electrochemiluminescent excitation.We provide proof that this whole blood assay is a suitable new method for hazard identification of safety-relevant cytokine release in the clinic based on its ability to detect the typical cytokine signatures found in humans for the tested mAbs and on a markedly lower assay background and cytokine release with the isotype-matched control mAb Tysabri™ – a clear advantage over the PBMC assay. Importantly, quantitative and qualitative differences in the relative cytokine responses to the individual mAbs, in the concentration-response relationships and the prominent cytokine signatures for individual mAbs in the two formats reflect diverging mechanisms of cytokine release and different levels of dependency on high density coating even for two anti-CD28 super-agonistic antibodies. These results clearly show that one generic approach to assessment of cytokine release using in vitro assays is not sufficient, but rather the choice of the method, i.e. applying the whole blood assay or the PBMC assay needs to be well considered depending on the target characteristics and the mechanistic features of the therapeutic mAbs being evaluated. 相似文献
7.
P. Ragnhammar J. -E. Frödin P. P. Trotta H. Mellstedt 《Cancer immunology, immunotherapy : CII》1994,39(4):254-262
Unconjugated monoclonal antibodies (mAb) kill tumor cells in vivo by activating immune functions. One of these is ADCC (antibody-dependent cellular cytotoxicity). The efficacy of mAbs might be augmented if the cytotoxic capacity of the effector cells could be increased. In this study the augmenting effect of granulocyte-colony-stimulating factor (G-CSF), granulocyte/macrophage(GM)-CSF and macrophage(M)-CSF was analyzed. Effector cells [peripheral blood mononuclear cells (PBMC) or granulocytes] were activated for 4–6 h by the respective CSF and assayed in an 18-h Cr51-release assay. Human colorectal, lymphoma, glioma and melanoma cell lines were target cells. Mouse mAbs of different isotypes, as well as chimeric and humanized mAbs, were used. mAbs having the human Fc part of the IgG molecule were the most effective. The killing capacity of PBMC as well as of granulocytes was statistically significantly enhanced when mAbs were added. M-CSF and GM-CSF were the best CSF for augmenting the lytic capacity of PBMC in ADCC. G-CSF had no significant effect on PBMC. Spontaneous cytolysis of PBMC was significantly augmented only by M-CSF. Granulocytes were, in general, significantly less effective than PBMC but may be equally effective killer cells together with mouse or human mAbs of the IgG1 isotype, particularly against melanoma cells. Granulocytes may also be significantly stimulated to increased lytic capacity when activated with G-CSF or GM-CSF. On the basis of the present evaluation, clinical trials in tumor patients are warranted, combining mAbs with GM-CSF or M-CSF. Preference might be given to GM-CSF as this cytokine activates both PBMC and granulocytes. 相似文献
8.
Martin A Rossotti Andrés González-Techera Julio Guarnaschelli Lucia Yim Ximena Camacho Marcelo Fernández Pablo Cabral Carmen Leizagoyen José A Chabalgoity Gualberto González-Sapienza 《MABS-AUSTIN》2015,7(5):820-828
Recombinant single domain antibodies (nanobodies) constitute an attractive alternative for the production of neutralizing therapeutic agents. Their small size warrants rapid bioavailability and fast penetration to sites of toxin uptake, but also rapid renal clearance, which negatively affects their performance. In this work, we present a new strategy to drastically improve the neutralizing potency of single domain antibodies based on their fusion to a second nanobody specific for the complement receptor CD11b/CD18 (Mac-1). These bispecific antibodies retain a small size (˜30 kDa), but acquire effector functions that promote the elimination of the toxin-immunocomplexes. The principle was demonstrated in a mouse model of lethal toxicity with tetanus toxin. Three anti-tetanus toxin nanobodies were selected and characterized in terms of overlapping epitopes and inhibition of toxin binding to neuron gangliosides. Bispecific constructs of the most promising monodomain antibodies were built using anti Mac-1, CD45 and MHC II nanobodies. When co-administered with the toxin, all bispecific antibodies showed higher toxin-neutralizing capacity than the monomeric ones, but only their fusion to the anti-endocytic receptor Mac-1 nanobody allowed the mice to survive a 10-fold lethal dose. In a model of delayed neutralization of the toxin, the anti- Mac-1 bispecific antibodies outperformed a sheep anti-toxin polyclonal IgG that had shown similar neutralization potency in the co-administration experiments. This strategy should have widespread application in the development of nanobody-based neutralizing therapeutics, which can be produced economically and more safely than conventional antisera. 相似文献
9.
《MABS-AUSTIN》2013,5(5):820-828
Recombinant single domain antibodies (nanobodies) constitute an attractive alternative for the production of neutralizing therapeutic agents. Their small size warrants rapid bioavailability and fast penetration to sites of toxin uptake, but also rapid renal clearance, which negatively affects their performance. In this work, we present a new strategy to drastically improve the neutralizing potency of single domain antibodies based on their fusion to a second nanobody specific for the complement receptor CD11b/CD18 (Mac-1). These bispecific antibodies retain a small size (?30 kDa), but acquire effector functions that promote the elimination of the toxin-immunocomplexes. The principle was demonstrated in a mouse model of lethal toxicity with tetanus toxin. Three anti-tetanus toxin nanobodies were selected and characterized in terms of overlapping epitopes and inhibition of toxin binding to neuron gangliosides. Bispecific constructs of the most promising monodomain antibodies were built using anti Mac-1, CD45 and MHC II nanobodies. When co-administered with the toxin, all bispecific antibodies showed higher toxin-neutralizing capacity than the monomeric ones, but only their fusion to the anti-endocytic receptor Mac-1 nanobody allowed the mice to survive a 10-fold lethal dose. In a model of delayed neutralization of the toxin, the anti- Mac-1 bispecific antibodies outperformed a sheep anti-toxin polyclonal IgG that had shown similar neutralization potency in the co-administration experiments. This strategy should have widespread application in the development of nanobody-based neutralizing therapeutics, which can be produced economically and more safely than conventional antisera. 相似文献
10.
Patients treated with monoclonal antibodies and cytokines for cancer receive often co-medication, which may influence treatment efficacy. Therefore, we investigated with a flowcytometric cytotoxicity assay the effect of several immunomodulatory drugs on antibody dependent cellular cytotoxicity (ADCC), interleukin-2 (IL-2) induced cytotoxicity and IL-2-induced-ADCC. We found that dexamethasone markedly inhibited the IL-2 induced cytotoxicity and the IL-2-induced-ADCC. Ondansetron, a 5-HT-3 serotonin receptor antagonist augmented significantly ADCC. Clemastine, a histamine type-2 receptor antagonist augmented the IL-2-induced-ADCC. The TNF antagonist thalidomide suppressed ADCC whereas pentoxifylline proved to be ineffective. Other tested drugs namely ibuprofen and indomethacin, both prostaglandin E2 antagonists, cimetidine a histamine type-2 receptor antagonist, the opioid pethidine, prostaglandin E2 and histamine exerted minor effects or had no influence on the tested parameters. We conclude that glucocorticosteroids should be avoided with monoclonal antibody and cytokine treatment. According to our in vitro data the other drugs tested did not have a negative impact on cellular cytotoxicity and ADCC. 相似文献
11.
Summary Only two of a number of macromolecules that bind to the surface of zoospores of the dieback fungus,Phytophthora cinnamomi, induce encystment when added to a suspension of actively swimming zoospores. One, the lectin Concanavalin A (ConA), binds to the entire surface of the zoospores including the surface of both flagella. Within 10 minutes more than 70% of the cells have encysted in the presence of 5 g/ml ConA. This encystment is inhibited by preincubation of the lectin with its hapten sugar, -methyl-D-mannoside. The other effective molecule, a monoclonal antibody designated Zf-1, is one of 35 that have been raised to components on the surface of zoospores and cysts ofP. cinnamomi. The antigen for Zf-1 occurs only on the surface of the two flagella. Purified Zf-1 at 15 g/ml causes encystment of 75% of the zoospores in 13minutes. To show that the induction of encystment by these two probes is not due simply to the presence of protein either in solution or bound to the zoospore a number of other proteins were tested, including other antibodies that bind to the zoospore surface. None of these other molecules caused encystment even at concentrations greater than 200 g/ml. The results are consistent with the surface components that bind ConA and Zf-1 being involved in the critical step of triggering encystment at the surface of a potential host during infection. 相似文献
12.
Mario S. Rosemblatt Gonzalo Pérez Enrique Jaimovich 《Molecular and cellular biochemistry》1991,106(2):99-107
We have established several hybridoma lines that produce monoclonal antibodies against transverse tubule (t-tubule) proteins from frog skeletal muscle. The specificity of these antibodies was characterized by ELISA and Western immunoblotting with purified t-tubule, sarcoplasmic reticulum and partially purified sarcolemmal membranes. One of the monoclonal antibodies (2/34.4) recognizes a band of 109 000 Da in immunoblots. When purified frog t-tubule vesicles were preincubated with this antibody we observed an increase in the rate of the Mg2+-ATPase enzyme (up to six fold) which was dependent on antibody concentration. Immunocytological experiments done on cryostat sections of frog muscle indicate that the antigen recognized by this antibody is localized mainly at the level of the t-tubules (I band) and to a lesser extent at the sarcolemma. These results indicate that monoclonal antibody 2/34.4 recognizes the t-tubule Mg2+-ATPase and modulates its activity. This antibody should be useful as a probe on studies designed to study the physiological function of the enzyme.Abbreviations t-tubules
transverse-tubules
- mAb
monoclonal antibody
- SR
sarcoplasmic reticulum
- SL
sarcolemma 相似文献
13.
Meyer PW Hodkinson B Ally M Musenge E Wadee AA Fickl H Tikly M Anderson R 《Arthritis research & therapy》2011,13(5):R160
Introduction
The revised shared epitope (SE) concept in rheumatoid arthritis (RA) is based on the presence (S) or absence (X) of the SE RAA amino acid motif at positions 72 to 74 of the third hypervariable region of the various human leucocyte antigen (HLA)-DRB1 alleles. The purpose of this study was to investigate SE subtypes on the basis of the American College of Rheumatology 1987 revised criteria for the classification of RA in a cohort of South African RA patients (n = 143) and their association with clinical and circulating biomarkers of disease activity (autoantibodies, acute phase reactants and cytokines). 相似文献14.
Xingsheng Wan Roudabeh J. Jamasbi Gary D. Stoner 《Cancer immunology, immunotherapy : CII》1993,36(2):94-100
A monoclonal antibody (mAb 5G) was produced against a tumorigenic rat esophageal epithelial cell line, designated B2T. Using an enzyme-linked immunosorbent assay, immunofluorescence assay (IFA), thin-layer chromatography (TLC) and immunoperoxidase staining, it was found that mAb 5G reacted specifically with a glycolipid antigen expressed by three tumorigenic rat esophageal epithelial cell lines, and two out of the three nontumorigenic, immortalized rat esophageal epithelial cell lines tested; but did not react with primary cultures of normal rat esophageal epithelial cells or fibroblasts. mAb 5G did not bind to rat respiratory tract carcinoma cell lines, to immortalized rat tracheal epithelial cell lines, or to primary cultures of normal rat tracheal epithelial cells. In addition, mAb 5G did not react with any of the human or mouse cell lines tested. In IFA experiments, mAb 5G stained imprints prepared from in vivo propagated B2T tumor tissues, but did not react with normal rat esophageal, tracheal, lung, liver, and kidney tissues. The antigen was identified by TLC as a neutral glycolipid, consisting of two bands, withR
F = 0.45 and 0.41, which migrated in proximity to the ceramide trihexoside standard on TLC plates. Densitometric scanning of the antigen bands indicated that the tumorigenic rat esophageal cell lines possessed 50%–90% more mAb-5G-reactive antigen than the nontumorigenic esophageal cell lines. The results show that mAb 5G reacts specifically with a glycolipid antigen expressed by tumorigenic and certain non-tumorigenic, immortalized rat esophageal epithelial cell lines that might be at the late stages of transformation and early malignancy. 相似文献
15.
Scheerens H Su Z Irving B Townsend MJ Zheng Y Stefanich E Chindalore V Bingham CO Davis JC 《Arthritis research & therapy》2011,13(5):R177
Introduction
The purpose of this study was to evaluate the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of the humanized anti-CD4 monoclonal antibody MTRX1011A in a randomized, double-blind placebo-controlled Phase 1 study in patients with rheumatoid arthritis (RA). 相似文献16.
Proteins of the kidney microvillar membrane. The 130 kDa protein in pig kidney, recognized by monoclonal antibody GK5C1, is an ectoenzyme with aminopeptidase activity. 总被引:3,自引:3,他引:3 下载免费PDF全文
The hybridoma GK5C1, secreting a monoclonal IgG1 antibody, was generated after immunizing a mouse with pig kidney microvillar membranes. An immunoradiometric assay showed that only kidney and intestine contained detectable amounts of the antigen recognized by the antibody, the highest concentration being observed in the ileum. Immunocytochemistry confirmed this observation and revealed that the antigen was associated with renal and intestinal brush borders. By 'Western' blotting, the antigen in kidney microvilli was shown to be a 130 kDa polypeptide. Papain treatment of the membrane before blotting converted the antigen to a 125 kDa polypeptide, no longer associated with membrane. Immunoaffinity chromatography of detergent-solubilized kidney membranes yielded a pure 130 kDa protein. When one purification was monitored by the immunoradiometric assay, the yield was 3.5% and the purification factor was 1000-fold. The antigen constituted about 0.8% of the microvillar membrane protein. The protein could be reconstituted into liposomes, where electron microscopy revealed an asymmetric orientation, similar to that of ectoenzymes in this membrane. The stalk length was about 3 nm. In electron micrographs the purified protein appeared to be dimeric. A search for enzymic activity was rewarded when L-leucyl-L-tryptophan was observed to be hydrolysed. Failure to hydrolyse N-blocked peptides and the ability to release the N-terminal residue from extended peptides, including Leu-Trp-Leu and Leu-Trp-Met-Arg, showed that the activity was that of an aminopeptidase. The enzyme was maximally active at pH 7.5 and irreversibly inactivated outside the range pH 6-10. This activity could not be attributed to trace contamination with aminopeptidase N. The best substrates so far identified for the 130 kDa protein were those with tryptophan in the P1', position. This protein is a new microvillar enzyme and it is proposed that it be called aminopeptidase W. 相似文献
17.
Yumiko Masuda Yuka Ogino Kozo Yamaichi Yusuke Takahashi Koichi Nonaka Kaori Wakamatsu 《Biotechnology progress》2020,36(3):e2955
Anion exchange (AEX) chromatography in the flow-through mode is a widely employed purification process for removal of process/product-related impurities and exogenous/endogenous viruses from monoclonal antibodies (mAbs). The pH of the mobile phase for AEX chromatography is typically set at half a unit below the isoelectric point (pI) of each mAb (i.e., pI − 0.5) or lower and, in combination with a low ionic strength, these conditions are usually satisfactory for both the recovery of the mAb and removal of impurities. However, we have recently encountered a tight binding of mAb1 to AEX resins under these standard chromatographic conditions. This anomalous adsorption behavior appears to be an effect of the asymmetric charge distribution on the surface of the mAb1. We found that mAb1 did not bind to the AEX resins if the mobile phase has a much lower pH and higher ionic strength, but those conditions would not allow adequate virus removal. We predicted that the use of membrane adsorbers might provide effective mAb1 purification, since the supporting matrix has a network structure that would be less susceptible to interactions with the asymmetric charge distribution on the protein surface. We tested the Natriflo HD-Q AEX membrane adsorber under standard chromatographic conditions and found that mAb1 flowed through the membrane adsorber, resulting in successful separation from murine leukemia virus. This AEX membrane adsorber is expected to be useful for process development because mAbs can be purified under similar standard chromatographic conditions regardless of their charge distributions. 相似文献