首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Endocrine practice》2018,24(8):726-732
Objective: Studies of hyperglycemic emergencies with hyperosmolality, including hyperglycemic hyperosmolar state (HHS) and “mixed presentation” with features of diabetic ketoacidosis (DKA) and HHS, are lacking in children. Objectives were to determine the incidence of DKA, HHS, and mixed presentation in a pediatric population, to characterize complications, and to assess accuracy of associated diagnosis codes.Methods: Retrospective cohort study of 411 hyperglycemic emergencies in pediatric patients hospitalized between 2009 and 2014. Hyperglycemic emergency type was determined by biochemical criteria and compared to the associated diagnosis code.Results: Hyperglycemic emergencies included: 333 DKA, 54 mixed presentation, and 3 HHS. Altered mental status occurred more frequently in hyperosmolar events (P<.0001), and patients with hyperosmolarity had 3.7-fold greater odds of developing complications compared to those with DKA (P =.0187). Of those with DKA, 98.5% were coded correctly. The majority (81.5%) of mixed DKA-HHS events were coded incorrectly. Events coded incorrectly had 3.1-fold greater odds of a complication (P =.02).Conclusion: A mixed DKA-HHS presentation occurred in 13.8% of characterized hyperglycemic emergencies, whereas HHS remained a rare diagnosis (0.8%) in pediatrics. Hyperosmolar events had higher rates of complications. As treatment of hyperosmolarity differs from DKA, its recognition is essential for appropriate management.Abbreviations: AMS = altered mental status; DKA = diabetic ketoacidosis; EMR = electronic medical record; HHS = hyperglycemic hyperosmolar state; ICD-9 = International Classification of Diseases, Ninth Revision; ISPAD = International Society of Pediatric and Adolescent Diabetes; NODM = new-onset diabetes mellitus; T1DM = type 1 diabetes mellitus; T2DM = type 2 diabetes mellitus  相似文献   

3.
Background: The biological functions of estrogens extend beyond the female and male reproductive tract, affecting the cardiovascular and renal systems. Traditional views on the role of postmenopausal hormone therapy (HT) in protecting against heart disease, which were challenged by clinical end point studies that found adverse effects of combined HT, are now being replaced by more differentiated concepts suggesting a beneficial role of early and unopposed HT that does not include a progestin.Objective: We reviewed recent insights, concepts, and research results on the biology of both estrogen receptor (ER) subtypes, ERα and ERβ, in cardiac and vascular tissues. Knowledge of these ER subtypes is crucial to understanding gender and estrogen effects and to developing novel, exciting strategies that may have a profound clinical impact.Methods: This review focuses on in vivo studies and includes data presented at the August 2007 meeting of the American Physiological Society as well as data from a search of the MEDLINE and Ovid databases from January 1986 to November 2007. Search results were restricted to English-language publications, using the following search terms: estrogen, estrogen receptor α, estrogen receptor β, estrogen receptor α agonist, estrogen receptor α antagonist, estrogen receptor β agonist, estrogen receptor β antagonist, PPT, DPN, heart, vasculature, ERKO mice, BERKO mice, transgenic mice, and knockout mice.Results: Genetic mouse models and pharmacologic studies that employed selective as well as nonselective ER agonists support the concept that both ER subtypes confer protective effects in experimental models of human heart disease, including hypertension, cardiac hypertrophy, and chronic heart failure.Conclusions: Genetic models and novel ligands hold the promise of further improving our understanding of estrogen action in multiple tissues and organs. These efforts will ultimately enhance the safety and efficacy of HT and may also result in new applications for synthetic female sex hormone analogues.  相似文献   

4.
Renal prostaglandins may be important in the modulation of compensatory renal growth. Reductions in renal mass are associated with increased synthesis of these substances by the remaining kidney, and inhibition of prostaglandin synthesis diminishes renal function in partially nephrectomized animals and in patients with reduced functioning renal mass. We examined the effects of uninephrectomy and treatment with indomethacin on renal prostaglandin E2 and 6-keto prostaglandin F concentrations in adult male Sprague Dawley rats. The renal content of these prostaglandins was significantly increased in the remaining kidney two days following uninephrectomy (p<0.01). Treatment with 5 mg/kg/day of indomethacin over this period abolished the compensatory increase in renal prostaglandin synthesis and significantly attenuated compensatory increases in renal mass, protein and RNA concentration (p<0.05). No alterations in kidney weight, protein or RNA concentrations were found in intact animals treated with the same dose of indomethacin. These findings suggest renal prostaglandins may participate in the biological events leading to compensatory renal growth.  相似文献   

5.
Various growth factors and cytokines have been implicated in different forms of kidney enlargement. Vascular endothelial growth factor (VEGF) is essential for normal renal development and plays a role in diabetic glomerular enlargement. To explore a possible role for VEGF in compensatory renal changes after uninephrectomy, we examined the effect of a neutralizing VEGF-antibody (VEGF-Ab) on glomerular volume and kidney weight in mice treated for 7 days. Serum and kidney insulin-like growth factor I (IGF-I) levels were measured, since IGF-I has been implicated in the pathogenesis of compensatory renal growth, and VEGF has been suggested to be a downstream mediator of IGF-I. Placebo-treated uninephrectomized mice displayed an early transient increase in kidney IGF-I concentration and an increase in glomerular volume and kidney weight. In VEGF-Ab-treated uninephrectomized animals, increased glomerular volume was abolished, whereas renal hypertrophy was partially blocked. Furthermore, the renal effects of VEGF-Ab administration were seen without affecting the renal IGF-I levels. In conclusion, these results demonstrate that compensatory glomerular growth after uninephrectomy is VEGF dependent.  相似文献   

6.
To observe effect of sophora japonica total flavonoids on pancreas, kidney tissue morphology of streptozotocin-induced diabetic mice model. Mice received tail vein injection of streptozotocin (60 mg/kg) for diabetes modeling. The model mice were divided into five groups, to be respectively fed with high, middle and small doses of sophora japonica total flavonoids solution, metformin solution and saline of the same volume. Another blank control group was set to be fed with saline of the same volume. The mice were administered once a day for 30 consecutive days, to be euthanatized after fasting blood glucose level testing on 30th day with pancreas, kidney taken out for pathological section and microscopic examination. The mice chain streptozotocin diabetes modeling was successful, with significant pathological changes (P < 0.01) in pancreas, kidney. Compared with model group, high, middle and small doses of sophora japonica total flavonoids could significantly alleviate streptozotocin-induced pancreas, kidney damage (P < 0.01). Conclusion: Sophora japonica total flavonoids can effectively alleviate pancreas, kidney injury of streptozotocin-induced diabetic mice model.  相似文献   

7.
Background: Across all ages, the incidence and rate of progression of most nondiabetic renal diseases are markedly higher in men compared with age-matched women. These observations suggest that female sex may be renoprotective. In the setting of diabetes, however, this female protection against the development and progression of renal disease is diminished.Objective: This review aimed to summarize our current understanding of sex differences in the development and progression of diabetic renal disease, and of the contribution of sex hormones, particularly estrogens, to the pathophysiology of this disease. We also attempted to answer why female sex does not protect the diabetic kidney.Methods: Using terms such as gender, sex, diabetes, diabetic nephropathy, estrogens, and sex hormones, the PubMed database was searched for English-language articles; targeted searches were conducted using terms such as gender/sex differences in diabetic renal disease. No restrictions were imposed on publication dates.Results: Although the existing data regarding the sex differences in the incidence and progression of diabetic renal disease are inconclusive, the undisputed fact is that women with either type 1 or type 2 diabetes mellitus exhibit a much higher incidence of renal disease compared with nondiabetic women. It is conceivable that the loss of female sex as a renoprotective factor in diabetes may be related to the abnormal regulation of sex hormone concentrations. Both clinical and experimental data suggest that diabetes may be associated with an imbalance in estradiol concentrations. Supplementation with 17β-estradiol or administration of selective estrogen receptor modulators reduces the incidence of diabetes and attenuates the progression of diabetic renal disease.Conclusions: Serum concentrations of ovarian hormones may provide a new means for predicting future risk of renal complications in diabetes. Exogenous steroid hormones may be an effective treatment for attenuating the progression of diabetic nephropathy.  相似文献   

8.
Background: Gender affects the incidence, prevalence, and progression of renal disease. In animal models of the disease, female sex appears to modify the course of progression. Hormonal manipulation by male or female castration also changes the course of renal disease progression, suggesting direct effects of sex hormones in influencing the course of these maladies.Objective: This review examines the pertinent animal and human studies assessing the role of gender, and strives to shed light on the possible physiologic mechanisms underlying the effect of gender, on renal disease progression.Methods: A summary and evaluation of past and recent studies describing the rate of renal disease progression in animal models and humans as it pertains to gender is provided. In addition, studies elucidating the factors involved in the more modest renal progression rate in females are reviewed and conclusions drawn. Relevant English-language publications were identified by searching the PubMed database from January 1990 until November 2007 using the search terms gender, sex, renal disease, and kidney.Results: In polycystic kidney disease, membranous nephropathy, immunoglobulin A nephropathy, and “chronic renal disease of unknown etiology,” men progress at a faster rate to end-stage renal failure than do women. In type 1 diabetes mellitus, there is evidence that males are more likely to manifest signs of renal disease, such as proteinuria. The factors involved in this gender disparity may include diet, kidney and glomerular size, differences in glomerular hemodynamics, and the direct effects of sex hormones. In many, but not all, animal models of renal disease, estrogens slow progression rate. Several studies have recently evaluated the effect of selective estrogen receptor modulators on renal function in humans.Conclusion: Further studies assessing the factors involved in the gender disparity in renal disease progression and the effects of hormonal treatments are warranted.  相似文献   

9.
Recent preclinical studies demonstrate a role for the prostaglandin E2 (PGE2) subtype 1 (EP1) receptor in mediating, at least in part, the pathophysiology of hypertension and diabetes mellitus. A series of amide and N-acylsulfonamide analogs of a previously described picolinic acid-based human EP1 receptor antagonist (7) were prepared. Each analog had improved selectivity at the mouse EP1 receptor over the mouse thromboxane receptor (TP). A subset of analogs gained affinity for the mouse PGE2 subtype 3 (EP3) receptor, another potential therapeutic target. One analog (17) possessed equal selectivity for EP1 and EP3, displayed a sufficient in vivo residence time in mice, and lacked the potential for acyl glucuronide formation common to compound 7. Treatment of mice with 17 significantly attenuated the vasopressor activity resulting from an acute infusion of EP1 and EP3 receptor agonists. Compound 17 represents a potentially novel therapeutic in the treatment of hypertension and diabetes mellitus.  相似文献   

10.
《Endocrine practice》2020,26(12):1425-1434
Objective: Adverse childhood experiences (ACEs) predispose individuals to poor health outcomes as adults. Although a dose-response relationship between the number of ACEs and certain chronic illnesses has been shown, the impact of ACEs on diabetes is not thoroughly understood. We investigated the prevalence of ACEs in patients with diabetes and the potential relationship to the severity of diabetes.Methods: Patients with diabetes (both type 1 and type 2) or obesity were surveyed from the Endocrinology & Diabetes Center at McLaren Central Michigan in Mount Pleasant, Michigan. A validated, standard ACE questionnaire was administered to quantify the number of adverse childhood events that patients have experienced. A retrospective chart analysis was then conducted, addressing the relationship of ACEs with the severity of disease in the diabetes group and the obesity group. The number of ACEs was correlated with disease comorbidities, complications, and measurable quantities, such as body mass index (BMI) and hemoglobin A1c (HbA1c).Results: ACE scores in both diabetes and obesity groups were shown to have a greater prevalence compared to the general ACE average in Michigan. ACE scores also positively correlated to BMI and HbA1c in the diabetes group. Those with higher ACE scores in the diabetes group were also more likely to have depression and anxiety.Conclusion:ACE screening may lead to a greater understanding of the severity of and progression of diabetes. Ultimately, these results could provide support to potential interventional studies leading to the altered management of diabetes in patients with ACEs, or preventative intervention to children with ACEs.Abbreviations: ACE = adverse childhood experiences; BMI = body mass index; HbA1c = hemoglobin A1c; T1DM = type 1 diabetes mellitus; T2DM = type 2 diabetes mellitus  相似文献   

11.
《Endocrine practice》2015,21(9):1054-1065
Objective: Following the first Food and Drug Administration (FDA) approval in 2013, sodium glucose cotransporter 2 (SGLT2) inhibitors have generated much interest among physicians treating patients with type 2 diabetes mellitus (T2DM). Here, the role in treatment with this drug class is considered in the context of T2DM treatment paradigms.Methods: The clinical trials for the SGLT2 inhibitors are examined with a focus on canagliflozin, dapagliflozin, and empagliflozin.Results: Evidence from clinical trials in patients with T2DM supports the use of SGLT2 inhibitors either as monotherapy or in addition to other glucose-lowering treatments as adjuncts to diet and exercise, and we have gained significant clinical experience in a relatively short time.Conclusion: The drugs appear to be useful in a variety of T2DM populations, contingent primarily on renal function. Most obviously, SGLT2 inhibitors appear to be well suited for patients with potential for hypoglycemia or weight gain. In clinical trials, patients treated with SGLT2 inhibitors have experienced moderate weight loss and a low risk of hypoglycemic events except when used in combination with an insulin secretagogue. In addition, SGLT2 inhibitors have been shown to reduce blood pressure, so they may be beneficial in patients with T2DM complicated by hypertension. SGLT2 inhibitors were incorporated into the 2015 American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) position statement on the management of hyperglycemia and received an even more prominent position in the American Association of Clinical Endocrinologists (AACE)/American College of Endocrinology (ACE) comprehensive diabetes management guidelines and algorithm.Abbreviations: AE = adverse event A1C = glycated hemoglobin CI = confidence interval CKD = chronic kidney disease DKA = diabetic ketoacidosis DPP-4 = dipeptidyl peptidase 4 eGFR = estimated glomerular filtration rate FDA = Food and Drug Administration FPG = fasting plasma glucose GLP-1 = glucagon-like peptide 1 HDL-C = high-density lipoprotein cholesterol HR = hazard ratio LADA = late-onset autoimmune diabetes of adulthood LDL-C = low-density lipoprotein cholesterol MACE = major adverse cardiovascular events SGLT1 = sodium glucose cotransporter 1 SGLT2 = sodium glucose cotransporter 2 T1DM = type 1 diabetes mellitus T2DM = type 2 diabetes mellitus UACR = urine albumin to creatinine ratio  相似文献   

12.
In the rat, the administration of beta1-24-corticotrophin during 7 days following an uninephrectomy enhances significantly the compensatory hypertrophy of the remaining kidney. There is no increase in renal compensatory hypertrophy when ACTH is injected to previously adrenalectomized rats. This action of ACTH could be related to the diabetes mellitus induced by this hormone or to an increase in sodium reabsorption by the tubular epithelial cells.  相似文献   

13.
《Endocrine practice》2016,22(5):612-621
Objective: There is general recognition that insulin and glucagon are the main hormones involved in the pathophysiology of diabetes, but the role of glucagon in diabetes is complex and in some circumstances controversial. The increasing appreciation of the role of glucagon in currently used hypoglycemic agents and the ongoing development of glucagon-targeted therapies underscores glucagon's important contribution in optimizing diabetes management. The current review provides a background on glucagon physiology and pathophysiology and an update for investigators, endocrinologists, and other healthcare providers on glucagon-modulating therapies.Methods: A literature review was conducted utilizing published literature in PubMed and AccessMedicine including the years 1922–2015 using the following key words: glucagon, bihormonal, diabetes mellitus, glucagon antagonists, glucagon-targeted therapies.Results: Glucagon is a counterregulatory hormone that promotes hepatic glucose production, thus preventing hypoglycemia in normal physiology. In patients with diabetes mellitus, glucagon secretion may be unregulated, which contributes to problems with glucose homeostasis. Several of the most effective therapies for diabetes have been found to suppress glucagon secretion or action, which may contribute to their success. Additionally, glucagon-specific targeted therapies, such as glucagon receptor antagonists, are being studied at a basic and clinical level.Conclusion: Glucagon plays an important role in contributing to hyperglycemia in patients with diabetes. Utilizing hypoglycemic agents that decrease glucagon secretion or inhibit glucagon action can help improve glycemic control, making these agents a valuable resource in diabetes therapy.Abbreviations:cAMP = cyclic adenosine monophosphateDPP-4 = dipeptidyl peptidase 4GLP-1 = glucagon-like peptide 1GR-/- = glucagon receptor knockoutGR-ASO = antisense oligonucleotides targeted against the glucagon receptorHbA1c = hemoglobin A1cHGP = hepatic glucose productionSGLT-2 = sodium-glucose cotrans-porter 2T1DM = type 1 diabetes mellitusT2DM = type 2 diabetes mellitus  相似文献   

14.
《Endocrine practice》2009,15(2):104-110
ObjectiveTo compare the effect of bed rest on orthostatic responses of patients with type 2 diabetes mellitus and nondiabetic control subjects.MethodsSix patients with type 2 diabetes and 6 nondiabetic control subjects underwent 48 hours of bed rest and 48 hours of ambulatory activity in randomized order. A 10-minute tilt test was conducted before and after each period of hospitalization, and cardiovascular responses to 80° head-up tilt were analyzed with use of a 2-factorial (study group and bed rest condition) analysis of variance design. We hypothesized that patients with diabetes would experience more severe changes in orthostatic response after bed rest.ResultsNo significant differences in orthostatic responses were observed before bed rest between control subjects and patients with diabetes. After bed rest, control subjects had a greater (P = .01) increase in heart rate during tilt in comparison with before bed rest (before versus after bed rest, 9 ± 4 versus 24 ± 7 beats/min) and maintained their blood pressure during tilt. After bed rest, patients with diabetes did not have a compensatory increase in heart rate and had a greater (P = .02) decline in systolic blood pressure during tilt in comparison with before bed rest (before versus after bed rest, -7 ± 10 versus -21 ± 11 mm Hg). Their arm and leg skin vasomotor responses (laser Doppler flowmetry) during tilt were not altered after bed rest and were similar to those in control subjects before and after bed rest.ConclusionCardiac neuropathy in patients with type 2 diabetes may prevent a compensatory heart rate response after bed rest deconditioning and result in a more severe orthostatic response. A greater decrease in blood pressure with upright tilt is evident after a relatively short period of bed rest. (Endocr Pract. 2009;15:104-110)  相似文献   

15.
《Endocrine practice》2020,26(8):915-922
Objective: In December 2019, a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused an outbreak of coronavirus disease 2019 (COVID-19) that resulted in a global pandemic with substantial morbidity and mortality. Currently, there is no specific treatment or approved vaccine against COVID-19. The underlying associated comorbidity and diminished immune function of some pituitary patients (whether caused by the disease and its sequelae or treatment with excess glucocorticoids) increases their risk of contracting and developing complications from COVID-19 infection.Methods: A review of studies in PubMed and Google Scholar published between January 2020 to the time of writing (May 1, 2020) was conducted using the search terms ‘pituitary,’ ‘coronavirus,’ ‘COVID-19’, ‘2019-nCoV’, ‘diabetes mellitus’, ‘obesity’, ‘adrenal,’ and ‘endocrine.’Results: Older age and pre-existing obesity, hypertension, cardiovascular disease, and diabetes mellitus increase the risk of hospitalization and death in COVID-19 patients. Men tend to be more severely affected than women; fortunately, most men, particularly of younger age, survive the infection. In addition to general comorbidities that may apply to many pituitary patients, they are also susceptible due to the following pituitary disorder–specific features: hypercortisolemia and adrenal suppression with Cushing disease, adrenal insufficiency and diabetes insipidus with hypopituitarism, and sleep-apnea syndrome and chest wall deformity with acromegaly.Conclusion: This review aims to focus on the impact of COVID-19 in patients with pituitary disorders. As most countries are implementing mobility restrictions, we also discuss how this pandemic has affected patient attitudes and impacted our decision-making on management recommendations for these patients.Abbreviations: ACE = angiotensin-converting enzyme; AI = adrenal insufficiency; ARB = angiotensin receptor blocker; ARDS = acute respiratory disease syndrome; COVID-19 = coronavirus disease 2019; CPAP = continuous positive airway pressure; DI = diabetes insipidus; DM = diabetes mellitus; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2  相似文献   

16.
Background: Many developing countries, including countries of the English-speaking Caribbean, are undergoing an epidemiologic transition and experiencing rapid increases in the prevalence of diabetes.Objectives: This article examines the epidemiology of diabetes, the types of diabetes, the etiologic factors and complications of diabetes, and the public health burden associated with diabetes in the Caribbean.Methods: An extensive PubMed literature search was conducted for the period 1951 to 2008 using the search terms diabetes, glucose intolerance, Caribbean, Jamaica, Barbados, Trinidad, Bahamas, Guyana, and the names of all the other English-speaking Caribbean countries.Results: Four hundred articles were identified in the literature search. Of these, 131 original articles were selected for inclusion in this review. Prevalence rates for diabetes ranged from 11% to 18% of the population in several countries. The prevalence of atypical diabetes (ketosis-prone diabetes) may be declining because of increases in the proportions of the population with type 2 diabetes mellitus. Ecologic studies show an east-to-west gradient from West Africa to the Caribbean for obesity and obesity-related diseases. The steep increase in the prevalence of obesity and the increase in sedentarism in Caribbean societies are the main risk factors driving the diabetes epidemic. The roles of early-life origins (specifically, in infants with low birth weight and rapid catch-up growth and/or macrosomic infants) and genetic factors await further clarification in this population. Diabetic foot, nephropathy, and stroke are common complications.Conclusions: In the English-speaking Caribbean, diabetes is a major public health burden that threatens the gross domestic product of these developing island nations. Macroeconomic initiatives are needed to start the combat against diabetes.  相似文献   

17.
18.
Diabetic nephropathy is a serious complication of diabetes mellitus with a pressing need for effective metabolic markers to detect renal impairment. Of potential significance are the inositol compounds, myo-inositol (MI), and the less abundant stereoisomer, D-chiro-inositol (DCI), which are excreted at increased levels in the urine in diabetes mellitus, a phenomenon known as inosituria. There is also a selective urinary excretion of DCI compared to MI. As the biological origins of altered inositol metabolism in diabetes mellitus are unknown, the aim of this study was to determine whether the diabetic kidney was directly responsible. Kidneys isolated from four-week streptozotocin-induced diabetic rats were characterized by a 3-fold reduction in glomerular filtration rate (GFR) compared to matched non-diabetic kidneys. When perfused with fixed quantities of MI (50 µM) and DCI (5 µM) under normoglycemic conditions (5 mM glucose), GFR-normalized urinary excretion of MI was increased by 1.7-fold in diabetic vs. non-diabetic kidneys. By comparison, GFR-normalized urinary excretion of DCI was increased by 4-fold. Perfusion conditions replicating hyperglycemia (20 mM glucose) potentiated DCI but not MI urinary excretion in both non-diabetic and diabetic kidneys. Overall, there was a 2.4-fold increase in DCI urinary excretion compared to MI in diabetic kidneys that was independent of glucose ambience. This increased urinary excretion of DCI and MI in diabetic kidneys occurred despite increased renal expression of the inositol transporters, sodium myo-inositol transporter subtype 1 and 2 (SMIT1 and SMIT2). These findings show that the diabetic kidney primarily mediates inosituria and altered urinary partitioning of MI and DCI. Urinary inositol levels might therefore serve as an indicator of impaired renal function in diabetes mellitus with wider implications for monitoring chronic kidney disease.  相似文献   

19.
Background: Male-female differences in the expression of hypertension and in end-organ damage are evident in both experimental models and human subjects, with males exhibiting a more rapid onset of cardiovascular disease and mortality than do females. The basis for these male-female differences is probably the balance of the complex effects of sex steroids (androgens, estrogen, progesterone) and their metabolites on the multiple regulatory systems that influence blood pressure (BP). A key target of estrogen and other steroids is likely to be the different components of the renin-angiotensin-aldosterone system (RAAS).Objective: The aim of this study was to review the current experimental evidence on the protective effects of estrogen in hypertensive models.Methods: The search terms estrogen , renin-aangiotensin-aldosterone system, renin receptor, salt-sensitivity, endorgan damage, hypertension, kidney, mRen2.Lewis, and injury markers were used to identify relevant publications in the PubMed database (restricted to the English language) from January 1990 to October 2007.Results: In a new congenic model that expresses the mouse renin 2 gene (mRen2.Lewis), estrogen depletion (via ovariectomy [OVX ]) in young rats was found to have a marked stimulatory effect on the progression of increased BP and cardiac dysfunction. Moreover, estrogen depletion exacerbated salt-sensitive hypertension and the extent of salt-induced cardiac and renal injury in young mRen2.Lewis rats, which probably reflected the inability to appropriately regulate various components of the RAAS. However, OVX in aged mRen2.Lewis rats conveyed renal protective effects from a high-salt diet compared with intact hypertensive littermates (64 weeks), and these effects were independent of changes in BP.Conclusion: These studies in hypertensive mRen2.Lewis rats underscored the influence of ovarian hormones on BP and tissue injury, as well as the plasticity of this response, apparently due to age and salt status.  相似文献   

20.
《Endocrine practice》2020,26(6):604-611
Objective: Treatment of hyperglycemia with insulin is associated with increased risk of hypoglycemia in type 2 diabetes mellitus (T2DM) patients receiving total parenteral nutrition (TPN). The aim of this study was to determine the predictors of hypoglycemia in hospitalized T2DM patients receiving TPN.Methods: Post hoc analysis of the INSUPAR study, which is a prospective, open-label, multicenter clinical trial of adult inpatients with T2DM in a noncritical setting with indication for TPN.Results: The study included 161 patients; 31 patients (19.3%) had hypoglycemic events, but none of them was severe. In univariate analysis, hypoglycemia was significantly associated with the presence of diabetes with end-organ damage, duration of diabetes, use of insulin prior to admission, glycemic variability (GV), belonging to the glargine insulin group in the INSUPAR trial, mean daily grams of lipids in TPN, mean insulin per 10 grams of carbohydrates, duration of TPN, and increase in urea during TPN. Multiple logistic regression analysis showed that the presence of diabetes with end-organ damage, GV, use of glargine insulin, and TPN duration were risk factors for hypoglycemia.Conclusion: The presence of T2DM with end-organ damage complications, longer TPN duration, belonging to the glargine insulin group, and greater GV are factors associated with the risk of hypoglycemia in diabetic noncritically ill inpatients with parenteral nutrition.Abbreviations: ADA = American Diabetes Association; BMI = body mass index; CV% = coefficient of variation; DM = diabetes mellitus; GI = glargine insulin; GV = glycemic variability; ICU = intensive care unit; RI = regular insulin; T2DM = type 2 diabetes mellitus; TPN = total parenteral nutrition  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号