首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
hDOT1L links histone methylation to leukemogenesis   总被引:20,自引:0,他引:20  
Okada Y  Feng Q  Lin Y  Jiang Q  Li Y  Coffield VM  Su L  Xu G  Zhang Y 《Cell》2005,121(2):167-178
Epigenetic modifications play an important role in human cancer. One such modification, histone methylation, contributes to human cancer through deregulation of cancer-relevant genes. The yeast Dot1 and its human counterpart, hDOT1L, methylate lysine 79 located within the globular domain of histone H3. Here we report that hDOT1L interacts with AF10, an MLL (mixed lineage leukemia) fusion partner involved in acute myeloid leukemia, through the OM-LZ region of AF10 required for MLL-AF10-mediated leukemogenesis. We demonstrate that direct fusion of hDOT1L to MLL results in leukemic transformation in an hDOT1L methyltransferase activity-dependent manner. Transformation by MLL-hDOT1L and MLL-AF10 results in upregulation of a number of leukemia-relevant genes, such as Hoxa9, concomitant with hypermethylation of H3-K79. Our studies thus establish that mistargeting of hDOT1L to Hoxa9 plays an important role in MLL-AF10-mediated leukemogenesis and suggests that the enzymatic activity of hDOT1L may provide a potential target for therapeutic intervention.  相似文献   

4.
5.
6.
7.
KMT2/Set1 is the catalytic subunit of the complex of proteins associated with Set1 (COMPASS) that is responsible for the methylation of lysine 4 of histone H3 (H3K4) in Saccharomyces cerevisiae. Whereas monomethylated H3K4 (H3K4me1) is found throughout the genome, di- (H3K4me2) and tri- (H3K4me3) methylated H3K4 are enriched at specific loci, which correlates with the promoter and 5′-ends of actively transcribed genes in the case of H3K4me3. The COMPASS subunits contain a number of domains that are conserved in homologous complexes in higher eukaryotes and are reported to interact with modified histones. However, the exact organization of these subunits and their role within the complex have not been elucidated. In this study we showed that: (1) subunits Swd1 and Swd3 form a stable heterodimer that dissociates upon binding to a modified H3K4me2 tail peptide, suggesting a regulatory role in COMPASS; (2) the affinity of the subunit Spp1 for modified histone H3 substrates is much higher than that of Swd1 and Swd3; (3) Spp1 has a preference for H3K4me2/3 methylation state; and (4) Spp1 contains a high-affinity DNA-binding domain in the previously uncharacterised C-terminal region. These data allow us to suggest a mechanism for the regulation of COMPASS activity at an actively transcribed gene.  相似文献   

8.
高文龙  刘红林 《遗传》2007,29(12):1449-1454
组蛋白甲基化是一种重要的组蛋白共价修饰, 在染色质结构和基因表达的调控过程中起着重要的、多样化的作用。DOT1催化核心球体部位的组蛋白H3第79位赖氨酸(H3K79)使其发生甲基化, 是首个被发现的无SET结构域的组蛋白赖氨酸甲基转移酶, 代表了一类新的组蛋白赖氨酸甲基转移酶。DOT1及H3K79甲基化的特点决定了其可能具有重要的、特殊的生物学功能。文章重点综述了DOT1蛋白的结构及特点, DOT1及H3K79甲基化的生物学功能以及组蛋白泛素化修饰对H3K79甲基化的反式调控。  相似文献   

9.
Oncogene-induced senescence (OIS) is a stable cell cycle arrest that occurs in normal cells upon oncogene activation. Cells undergoing OIS express a wide variety of secreted factors that affect the senescent microenvironment termed the senescence-associated secretory phenotype (SASP), which is beneficial or detrimental in a context-dependent manner. OIS cells are also characterized by marked epigenetic changes. We globally assessed histone modifications of OIS cells and discovered an increase in the active histone marks H3K79me2/3. The H3K79 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) was necessary and sufficient for increased H3K79me2/3 occupancy at the IL1A gene locus, but not other SASP genes, and was downstream of STING. Modulating DOT1L expression did not affect the cell cycle arrest. Together, our studies establish DOT1L as an epigenetic regulator of the SASP, whose expression is uncoupled from the senescence-associated cell cycle arrest, providing a potential strategy to inhibit the negative side effects of senescence while maintaining the beneficial inhibition of proliferation.  相似文献   

10.
Chromosomal translocation is a common cause of leukaemia and the most common chromosome translocations found in leukaemia patients involve the mixed lineage leukaemia (MLL) gene. AF10 is one of more than 30 MLL fusion partners in leukaemia. We have recently demonstrated that the H3K79 methyltransferase hDOT1L contributes to MLL-AF10-mediated leukaemogenesis through its interaction with AF10 (ref. 5). In addition to MLL, AF10 has also been reported to fuse to CALM (clathrin-assembly protein-like lymphoid-myeloid) in patients with T-cell acute lymphoblastic leukaemia (T-ALL) and acute myeloid leukaemia (AML). Here, we analysed the molecular mechanism of leukaemogenesis by CALM-AF10. We demonstrate that CALM-AF10 fusion is both necessary and sufficient for leukaemic transformation. Additionally, we provide evidence that hDOT1L has an important role in the transformation process. hDOT1L contributes to CALM-AF10-mediated leukaemic transformation by preventing nuclear export of CALM-AF10 and by upregulating the Hoxa5 gene through H3K79 methylation. Thus, our study establishes CALM-AF10 fusion as a cause of leukaemia and reveals that mistargeting of hDOT1L and upregulation of Hoxa5 through H3K79 methylation is the underlying mechanism behind leukaemia caused by CALM-AF10 fusion.  相似文献   

11.
12.
DOT1L, the only known histone H3-lysine 79 (H3K79) methyltransferase, has been shown to be essential for the survival and proliferation of mixed-linkage leukemia (MLL) gene rearranged leukemia cells, which are often resistant to conventional chemotherapeutic agents. To study the functions of DOT1L in MLL-rearranged leukemia, SYC-522, a potent inhibitor of DOT1L developed in our laboratory, was used to treat MLL-rearranged leukemia cell lines and patient samples. SYC-522 significantly inhibited methylation at H3K79, but not H3K4 or H3K27, and decreased the expression of two important leukemia-relevant genes, HOXA9 and MEIS1, by more than 50%. It also significantly reduced the expression of CCND1 and BCL2L1, which are important regulators of cell cycle and anti-apoptotic signaling pathways. Exposure of MLL-rearranged leukemia cells to this compound caused cell cycle arrest and promoted differentiation of those cells, both morphologically and by increased CD14 expression. SYC-522 did not induce apoptosis, even at 10 µM for as long as 6 days. However, treatment with this DOT1L inhibitor decreased the colony formation ability of primary MLL-rearranged AML cells by up to 50%, and promoted monocytic differentiation. Notably, SYC-522 treatment significantly increased the sensitivity of MLL-rearranged leukemia cells to chemotherapeutics, such as mitoxantrone, etoposide and cytarabine. A similar sensitization was seen with primary MLL-rearranged AML cells. SYC-522 did not affect chemotherapy-induced apoptosis in leukemia cells without MLL-rearrangement. Suppression of DOT1L activity inhibited the mitoxantrone-induced increase in the DNA damage response marker, γH2AX, and increased the level of cPARP, an intracellular marker of apoptosis. These results demonstrated that SYC-522 selectively inhibited DOT1L, and thereby altered gene expression, promoted differentiation, and increased chemosensitivity by preventing DNA damage response. Therefore, inhibition of DOT1L, in combination with DNA damaging chemotherapy, represents a promising approach to improving outcomes for MLL-rearranged leukemia.  相似文献   

13.
14.
15.
High-resolution profiling of histone methylations in the human genome   总被引:75,自引:0,他引:75  
Barski A  Cuddapah S  Cui K  Roh TY  Schones DE  Wang Z  Wei G  Chepelev I  Zhao K 《Cell》2007,129(4):823-837
Histone modifications are implicated in influencing gene expression. We have generated high-resolution maps for the genome-wide distribution of 20 histone lysine and arginine methylations as well as histone variant H2A.Z, RNA polymerase II, and the insulator binding protein CTCF across the human genome using the Solexa 1G sequencing technology. Typical patterns of histone methylations exhibited at promoters, insulators, enhancers, and transcribed regions are identified. The monomethylations of H3K27, H3K9, H4K20, H3K79, and H2BK5 are all linked to gene activation, whereas trimethylations of H3K27, H3K9, and H3K79 are linked to repression. H2A.Z associates with functional regulatory elements, and CTCF marks boundaries of histone methylation domains. Chromosome banding patterns are correlated with unique patterns of histone modifications. Chromosome breakpoints detected in T cell cancers frequently reside in chromatin regions associated with H3K4 methylations. Our data provide new insights into the function of histone methylation and chromatin organization in genome function.  相似文献   

16.
We screened radiation-sensitive yeast mutants for DNA damage checkpoint defects and identified Dot1, the conserved histone H3 Lys 79 methyltransferase. DOT1 deletion mutants (dot1Delta) are G1 and intra-S phase checkpoint defective after ionizing radiation but remain competent for G2/M arrest. Mutations that affect Dot1 function such as Rad6-Bre1/Paf1 pathway gene deletions or mutation of H2B Lys 123 or H3 Lys 79 share dot1Delta checkpoint defects. Whereas dot1Delta alone confers minimal DNA damage sensitivity, combining dot1Delta with histone methyltransferase mutations set1Delta and set2Delta markedly enhances lethality. Interestingly, set1Delta and set2Delta mutants remain G1 checkpoint competent, but set1Delta displays a mild S phase checkpoint defect. In human cells, H3 Lys 79 methylation by hDOT1L likely mediates recruitment of the signaling protein 53BP1 via its paired tudor domains to double-strand breaks (DSBs). Consistent with this paradigm, loss of Dot1 prevents activation of the yeast 53BP1 ortholog Rad9 or Chk2 homolog Rad53 and decreases binding of Rad9 to DSBs after DNA damage. Mutation of Rad9 to alter tudor domain binding to methylated Lys 79 phenocopies the dot1Delta checkpoint defect and blocks Rad53 phosphorylation. These results indicate a key role for chromatin and methylation of histone H3 Lys 79 in yeast DNA damage signaling.  相似文献   

17.
18.
19.
Disruptor of telomeric silencing 1-like (DOT1L) is the only non-SET domain histone lysine methyltransferase (KMT) and writer of H3K79 methylation on nucleosomes marked by H2B ubiquitination. DOT1L has elicited significant attention because of its interaction or fusion with members of the AF protein family in blood cell biology and leukemogenic transformation. Here, our goal was to extend previous structural information by performing a robust molecular dynamic study of DOT1L and its leukemogenic partners combined with mutational analysis. We show that statically and dynamically, D161, G163, E186, and F223 make frequent time-dependent interactions with SAM, while additional residues T139, K187, and N241 interact with SAM only under dynamics. Dynamics models reveal DOT1L, SAM, and H4 moving as one and show that more than twice the number of DOT1L residues interacts with these partners, relative to the static structure. Mutational analyses indicate that six of these residues are intolerant to substitution. We describe the dynamic behavior of DOT1L interacting with AF10 and AF9. Studies on the dynamics of a heterotrimeric complex of DOT1L1-AF10 illuminated describe coordinated motions that impact the relative position of the DOT1L HMT domain to the nucleosome. The molecular motions of the DOT1L–AF9 complex are less extensive and highly dynamic, resembling a swivel-like mechanics. Through molecular dynamics and mutational analysis, we extend the knowledge previous provided by static measurements. These results are important to consider when describing the biochemical properties of DOT1L, under normal and in disease conditions, as well as for the development of novel therapeutic agents.  相似文献   

20.
The N-terminal tails of core histones are subjected to multiple covalent modifications, including acetylation, methylation, and phosphorylation. Similar to acetylation, histone methylation has emerged as an important player in regulating chromatin dynamics and gene activity. Histone methylation occurs on arginine and lysine residues and is catalyzed by two families of proteins, the protein arginine methyltransferase family and the SET-domain-containing methyltransferase family. Here, we report that lysine 79 (K79) of H3, located in the globular domain, can be methylated. K79 methylation occurs in a variety of organisms ranging from yeast to human. In budding yeast, K79 methylation is mediated by the silencing protein DOT1. Consistent with conservation of K79 methylation, DOT1 homologs can be found in a variety of eukaryotic organisms. We identified a human DOT1-like (DOT1L) protein and demonstrated that this protein possesses intrinsic H3-K79-specific histone methyltransferase (HMTase) activity in vitro and in vivo. Furthermore, we found that K79 methylation level is regulated throughout the cell cycle. Thus, our studies reveal a new methylation site and define a novel family of histone lysine methyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号