首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wildlife managers need empirical data about pronghorn (Antilocapra americana) movements in North Dakota to assess whether mid-summer surveys represent occupancy of pronghorn in hunting units during the fall hunting season. Using data from 121 radiocollared pronghorn we evaluated patterns of pronghorn migrations in southwestern North Dakota from 2004 to 2007. Pronghorn exhibited 2 primary movement patterns between summer and winter ranges: migrations >15 km (45%) and movement <15 km (55%). Most migratory pronghorn moved northeast or east in the spring and southwest or west in the fall. Average distance moved for migratory pronghorn was 70.6 km (range = 17.4–253 km). Mean date of pronghorn migration in spring was 20 March (SD = 20 days) and in fall was 22 October (SD = 17 days). Nearly all migratory pronghorn (97%) returned to within 15 km of their previous summer range, whereas only 61% of pronghorn returned to within 15 km of their previous winter range. Most pronghorn moved across hunting and survey unit boundaries; however, only 7 fall migrations occurred between the aerial survey and the hunting season. During years of our study, the mid-summer survey provided representative information about hunting unit occupancy of radiocollared pronghorn for the fall hunting season. © 2011 The Wildlife Society  相似文献   

2.
Habitat fragmentation has major negative impacts on wildlife populations, and the connectivity could reduce these negative impacts. This study was conducted to assess habitat suitability and structural connectivity of the Persian leopard along the Iran–Iraq border (i.e., the Zagros Mountains) and compare the situation of identified core habitats and connectivity with existing conservation areas (CAs). An ensemble modeling approach resulting from five models was used to predict habitat suitability. To identify core habitats and corridors along the Iran–Iraq border, factorial least‐cost path analyses were applied. The results revealed that topographic roughness, distance to CAs, annual precipitation, vegetation/cropland density, and distance to rivers were the most influential variables for predicting the occurrence of the Persian leopard in the study area. By an estimated dispersal distance of 82 km (suggested by previous studies), three core habitats were identified (two cores in Iran and one core in Iraq). The largest cores were located in the south and the center of the study area, which had the highest connectivity priorities. The connectivity from these cores was maintained to the core within the Iraqi side. Only about one‐fifth of detected core habitats and relative corridors were protected by CAs in the study area. Detected core habitats and connectivity areas in this study could be an appropriate road map to accomplish the CAs network along the Iran–Iraq border regarding Persian leopard conservation. Establishing transboundary CAs, particularly in the core habitat located in the center of the study area, is strongly recommended to conserve existing large carnivores, including the Persian leopard.  相似文献   

3.
Given the pervasive influence of human induced habitat fragmentation in ecological processes, landscape models are a welcome advance. The development of GIS software has allowed a greater use of these models and of analyses of the relationship between species and habitat variables. Habitat suitability models are thus theoretical concepts that can be used for planning in fragmented landscapes and habitat conservation. The most commonly used models are based on single species and on the assignment of suitability values for some environmental variables. Generally the cartographic basis for modeling suitability are thematic maps produced by a Boolean logic. In this paper we propose a model based on a set of focal species and on maps produced by a fuzzy classification method. Focal species, selected by an expert-based approach, provide a practical way of extending the scope of habitat suitability models to the conservation of biodiversity at landscape scale. The utilisation of a classification method that applies a continuity criterion may allow more consideration of the connectivity of an area because it allows a better detection of ecological gradients within a landscape. We applied this methodology to the Tuscany region focusing on terrestrial mammals. Performing a fuzzy classification we produced five land cover maps and through image processing operations we obtained a suitability model which applies a continuity criterion. The resulting suitability fuzzy model seems better for the study of connectivity and fragmentation, especially in areas with high spatial complexity.  相似文献   

4.
Roe deer is a protected species in Iran as its population and distribution in the country have considerably declined. Roe deer are threatened by several factors such as habitat fragmentation and road mortality, so studying their distribution and movement through the increasing habitat destruction and fragmentation is necessary. This will become increasingly important because climate change will transform the species’ future habitat and connectivity patterns. We evaluated the roe deer’s potential distribution range in northern Iran and, for the first time, developed connectivity models and designed corridors for the present and future to make better conservation plans. We collected 91 points indicating the presence of roe deer in the study region. After developing ensemble models using six species distribution algorithms, we defined high-ranked habitat cores using the concept of landscape suitability prioritization. From these, we designed connectivity and corridors in two time-frames with the help of least-cost paths and circuit theories to predict the potential movement throughout the study area. We estimated that the overall core habitats for roe deer in the present and future periods are, respectively, around 1200 km2 and 2600 km2, corresponding to 2 and 4 percent of the whole area. This suggests that the habitat core will expand in the future as a result of climate change. Similarly, the connectivity among the cores will strengthen. We also conclude that the temperature-driven and anthropogenic variables significantly affect the distribution of roe deer in northern Iran. It is necessary that conservationists and managers consider the designed corridors in the present study while planning conservation strategies.  相似文献   

5.
Barbed and woven wire fences, common structures across western North America, act as impediments to wildlife movements. In particular, fencing influences pronghorn (Antilocapra americana) daily and seasonal movements, as well as modifying habitat selection. Because of fencing''s impacts to pronghorn and other wildlife, it is a potentially important factor in both wildlife movement and habitat selection models. At this time, no geospatial fencing data is available at regional scales. Consequently, we constructed a regional fence model using a series of land tenure assumptions for the Hi-Line region of northern Montana – an area consisting of 13 counties over 103,400 km2. Randomized 3.2 km long transects (n = 738) on both paved and unpaved roads were driven to collect information on habitat, fence densities and fence type. Using GIS, we constructed a fence location and a density model incorporating ownership, size, neighboring parcels, township boundaries and roads. Local knowledge of land ownership and land use assisted in improving the final models. We predict there is greater than 263,300 km of fencing in the Hi-Line region, with a maximum density of 6.8 km of fencing per km2 and mean density of 2.4 km of fencing per km2. Using field data to assess model accuracy, Cohen''s Kappa was measured at 0.40. On-the-ground fence modification or removal could be prioritized by identifying high fence densities in critical wildlife areas such as pronghorn migratory pathways or sage grouse lekking habitat. Such novel fence data can assist wildlife and land managers to assess effects of anthropogenic features to wildlife at various scales; which in turn may help conserve declining grassland species and overall ecological functionality.  相似文献   

6.
Movements of individuals within and among populations help to maintain genetic variability and population viability. Therefore, understanding landscape connectivity is vital for effective species conservation. The snow leopard is endemic to mountainous areas of central Asia and occurs within 12 countries. We assess potential connectivity across the species’ range to highlight corridors for dispersal and genetic flow between populations, prioritizing research and conservation action for this wide‐ranging, endangered top‐predator. We used resistant kernel modeling to assess snow leopard population connectivity across its global range. We developed an expert‐based resistance surface that predicted cost of movement as functions of topographical complexity and land cover. The distribution of individuals was simulated as a uniform density of points throughout the currently accepted global range. We modeled population connectivity from these source points across the resistance surface using three different dispersal scenarios that likely bracket the lifetime movements of individual snow leopard: 100 km, 500 km and 1000 km. The resistant kernel models produced predictive surfaces of dispersal frequency across the snow leopard range for each distance scenario. We evaluated the pattern of connectivity in each of these scenarios and identified potentially important movement corridors and areas where connectivity might be impeded. The models predicted two regional populations, in the north and south of the species range respectively, and revealed a number of potentially important connecting areas. Discrepancies between model outputs and observations highlight unsurveyed areas of connected habitat that urgently require surveying to improve understanding of the global distribution and ecology of snow leopard, and target land management actions to prevent population isolation. The connectivity maps provide a strong basis for directed research and conservation action, and usefully direct the attention of policy makers.  相似文献   

7.
Understanding habitat quality and landscape connectivity and exploring corridors connecting habitat patches are crucial for conservation, particularly for species distributed among isolated populations. The Sichuan golden snub-nosed monkey, Rhinopithecus roxellana, is an Endangered primate species endemic to mountainous forests in China. Its easternmost distribution lies in the Shennongjia area, which harbors an isolated subspecies, R. roxellana hubeiensis. Unfortunately, it has experienced significant habitat loss, fragmentation, and dramatic population decline in recent decades, primarily due to increased human disturbance. To quantify habitat quality, identify suitable habitat patches, and detect possible linkages among these patches for R. roxellana hubeiensis, we conducted habitat suitability assessments and landscape connectivity analyses in the Shennongjia area based on a set of environmental factors. We created a habitat quality model and a movement cost surface for the Shennongjia area based on a habitat suitability index, graph theory, expert knowledge, field experience, and information from the literature. Our results show that suitable habitat for R. roxellana hubeiensis in Shennongjia is fragmented and limited, and that this is particularly true for highly suitable habitats. We detected six core habitat patches and six least-cost paths and corridors. Our study does not provide accurate distributions of the monkeys and their habitat use. However, it identifies the most feasible and traversable habitats and corridors, which should be conservation priorities for this subspecies, and provides valuable guidance for reevaluating habitat conservation plans.  相似文献   

8.
Habitat fragmentation is an increasing threat to wildlife species across the globe and it has been predicted that future biodiversity will decrease rapidly without the intervention of scientifically-based management. In this study we have applied a landscape genetics approach to suggest a network design that will maintain connectivity among populations of the endangered mountain Nyala (Tragelaphus buxtoni) in the fragmented highlands of Ethiopia. DNA was obtained non-invasively from 328 individuals and genetic population structure and gene flow were estimated using 12 microsatellite markers. In addition, a 475-bp segment of the mitochondrial control region was sequenced for 132 individuals. Potential dispersal corridors were determined from least-cost path analysis based on a habitat suitability map. The genetic data indicated limited gene flow between the sampled mountain Nyala populations of the Bale Massif and the Arsi Massif. The genetic differentiation observed among five sampling areas of the Bale Massif followed a pattern of isolation by distance. We detected no impact of habitat resistance on the gene flow. In the future, however, the current expanding human population in the highlands of Ethiopia may reduce the current mountain Nyala habitat and further limit migration. Hence, maintaining habitat connectivity and facilitating survival of stepping-stone populations will be important for the future conservation of the species. The approach used here may also be useful for the study and conservation of other wildlife species inhabiting areas of increasing human encroachment.  相似文献   

9.

Aim

The practical value of the single‐species approach to conserve biodiversity could be minimal or negligible when sympatric species are limited by factors that are not relevant to the proposed umbrella species. In this study, we quantitatively evaluated as follows: (1) habitat suitability and potential movement corridors of a single umbrella species, giant panda (Ailuropoda melanoleuca); (2) habitat suitability of sympatric mammals; and (3) the potential effectiveness of the single‐species corridor planning to preserve suitable habitat and its connectivity of other focal species.

Location

Qinling Mountains, central part of China (15,000 km2).

Methods

We collected species distribution, environmental and anthropogenic data and conducted species occupancy modelling for giant panda and six other sympatric species (i.e., takin Budorcas taxicolor, tufted deer Elaphodus cephalophus, Chinese goral Naemorhedus griseus, Reeve's muntjac Muntiacus reevesi, leopard cat Prionailurus bengalensis and yellow‐throated marten Martes flavigula). We then conducted circuit models to identify potential corridors for each species and evaluated the effectiveness of giant panda corridors to restore the habitat connectivity for these sympatric mammals.

Results

Occupancy modelling revealed that each species had a unique set of environmental variables associated with its distribution in the Qinling Mountains. We found that giant panda and all other focal species had some degree of fragmentation to their suitable habitat that required restoring habitat connectivity. Among the eight potential giant panda corridors, conservation efforts to reduce anthropogenic impacts would significantly improve the effectiveness of six corridors, while the other two corridors would require altering the vegetation. Five proposed giant panda corridors had remarkable overlap with corridors proposed for other species. We suggest two giant panda corridors as a priority due to their potential to maximize the benefits to both giant panda and a broader suite of mammals.

Main conclusions

Corridor planning in this region of China will likely continue using the single‐species policy, but our results highlight that not all potential giant panda corridors have equal effectiveness for other wildlife species. When offered multiple alternative actions, conservation planners can prioritize corridor development based on a multispecies perspective without loss of connectivity for the priority species. This approach has strong implications to the conservation of wildlife communities in China, and elsewhere, where conservation plans developed for a single‐species garner most available funding and institutional support.
  相似文献   

10.
Even with global support for tiger (Panthera tigris) conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km2 of forest habitat was found to be only 21,290 km2. After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (F ST) between populations were better explained by modeled linkage costs (r>0.5, p<0.05) compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should provide legal status to corridors, use smart green infrastructure to mitigate development impacts, and restore habitats where connectivity has been lost.  相似文献   

11.
Few studies have examined the spatial and temporal migration patterns of snakes to and from active-season habitats. We conducted a year-long population-level analysis of cottonmouth Agkistrodon piscivorus migration patterns by monitoring snakes entering and leaving a Carolina bay wetland that was encircled by a continuous terrestrial drift fence. Cottonmouths used the wetland during the active season and left the bay in the fall to overwinter in other habitats. Adults and juveniles did not differ in time of arrival at the bay but juveniles left the bay earlier than adults. Spatially, captures of adult cottonmouths entering and leaving the bay were distributed non-randomly, with capture peaks corresponding to the directions to the nearest permanent aquatic habitats. Juveniles' immigration patterns in the spring were biased in the same directions as those of the adults, but they left non-directionally in the fall. This suggests that neonates do not rely on adult scent trailing to locate hibernacula, and that in a region with moderate winter temperatures, suitable overwintering sites may not be a limited resource. Additionally, our study demonstrates that cottonmouths make extensive use of upland habitats and underscores the importance of both critical upland habitat and forested corridors between wetlands and hibernacula for the conservation of wetlands herpetofauna.  相似文献   

12.
滕扬  张沼  张书理  杨永昕  贺伟  王娜  张正一  鲍伟东 《生态学报》2022,42(14):5990-6000
构建生态廊道在缓解生境破碎化对生物多样性的影响、维持濒危物种的遗传多样性、维护自然生态系统结构完整与功能稳定方面具有重要作用。以内蒙古大兴安岭南段分布的马鹿(Cervus elaphus)种群为研究对象,利用MaxEnt模型对其生境适宜性进行分析,并利用最小累积阻力模型构建潜在生态扩散廊道,探讨大兴安岭南段区域隔离马鹿种群的栖息地连通方案。结果显示,马鹿栖息地呈破碎化状态,种群有明显的隔离分布趋势,现有适宜栖息地具有海拔较低(800—1200 m)、坡度较缓(<15°)、靠近水源、植被类型多为靠近山林的灌丛或草地等特点。所构建12条生态廊道具有经过河流浅水节段、远离村落等特点,便于落实栖息地生态恢复管理措施。研究从区域尺度综合分析了大兴安岭南段马鹿栖息地现状及连通性,有助于优化适宜栖息地格局,促进马鹿扩散和栖息地连通,为该物种隔离种群及其栖息地保护规划提供现实指导和基础资料。  相似文献   

13.
为了将有限资源合理投放到关键区域, 实现物种保护成效的最大化, 找出质量最好的栖息地及它们之间的迁徙通道是制定保护规划的第一步。本研究以三江源的雪豹(Panthera uncia)栖息地为对象, 基于野外调查数据和高分辨率卫星遥感数据, 利用物种分布模型、保护规划模型和连通度分析工具, 找出了三江源地区雪豹的核心栖息地分布和潜在迁徙通道位置, 分析了目前保护中的潜在威胁, 并提出了针对三江源西、中、东三块区域的不同保护对策。结果表明: (1)三江源西部核心栖息地比较小而破碎, 但迁徙通道较多且没有明显窄点, 未来应关注青藏线的潜在阻碍作用, 同时应防范道路沿线的野生动物盗猎; (2)中部区域横跨玉树-杂多-囊谦的雪豹栖息地是三江源最大的核心雪豹栖息地, 在连通其他种群中也处于中心地位, 应通过种群监测确定其健康稳定, 对开发、偷猎等威胁防微杜渐, 保持其源种群的作用; (3)东部区域人口密度高, 受人类活动的影响最大, 需保证阿尼玛卿、年保玉则两块核心栖息地的质量, 并重点监测甘德县境内的省道处雪豹的迁徙通道是否畅通。三江源地区雪豹栖息地总体质量较好, 建议将维持核心源种群的稳定性, 保持种群间迁徙通道的畅通作为三江源的雪豹景观保护工作的整体目标。未来应充分利用天地一体化监测手段, 开展重要保护物种栖息地状况的评估和预警, 尤其是非保护地区域物种核心栖息地的开发建设活动。  相似文献   

14.
Connectivity for large mammals across human-altered landscapes results from movement by individuals that can be described via nested spatial scales as linkages (or zones or areas) with compatible land use types, constrictions that repeatedly funnel movement (as corridors) or impede it (as barriers), and the specific paths (or routes) across completely anthropogenic features (such as highways). Mitigation to facilitate animal movement through such landscapes requires similar attention to spatial scale, particularly when they involve complex topography, diverse types of human land use, and transportation infrastructure. We modeled connectivity for Asian elephant (Elephas maximus) and gaur (Bos gaurus) in the Shencottah Gap, a multiple-use region separating two tiger reserves in the Western Ghats, India. Using 840 km of surveys for animal signs within a region of 621 km2, we modeled landscape linkages via resource selection functions integrated across two spatial resolutions, and then potential dispersal corridors within these linkages using circuit theoretical models. Within these corridors, we further identified potential small-scale movement paths across a busy transportation route via least-cost paths and evaluated their viability. Both elephants and gaur avoided human-dominated habitat, resulting in broken connectivity across the Shencottah Gap. Predicted corridor locations were sensitive to analysis resolution, and corridors derived from scale-integrated habitat models correlated best with habitat quality. Less than 1% of elephant and gaur detections occurred in habitat that was poorer in quality than the lowest-quality component of the movement path across the transportation route, suggesting that connectivity will require habitat improvement. Only 28% of dispersal corridor area and 5% of movement path length overlapped with the upper 50% quantile of the landscape linkage; thus, jointly modeling these three components enabled a more nuanced evaluation of connectivity than any of them in isolation.  相似文献   

15.
Fragmented landscapes resulting from anthropogenic habitat modification can have significant impacts on dispersal, gene flow, and persistence of wildlife populations. Therefore, quantifying population connectivity across a mosaic of habitats in highly modified landscapes is critical for the development of conservation management plans for threatened populations. Endangered populations of the eastern tiger salamander (Ambystoma tigrinum) in New York and New Jersey are at the northern edge of the species’ range and remaining populations persist in highly developed landscapes in both states. We used landscape genetic approaches to examine regional genetic population structure and potential barriers to migration among remaining populations. Despite the post-glacial demographic processes that have shaped genetic diversity in tiger salamander populations at the northern extent of their range, we found that populations in each state belong to distinct genetic clusters, consistent with the large geographic distance that separates them. We detected overall low genetic diversity and high relatedness within populations, likely due to recent range expansion, isolation, and relatively small population sizes. Nonetheless, landscape connectivity analyses reveal habitat corridors among remaining breeding ponds. Furthermore, molecular estimates of population connectivity among ponds indicate that gene flow still occurs at regional scales. Further fragmentation of remaining habitat will potentially restrict dispersal among breeding ponds, cause the erosion of genetic diversity, and exacerbate already high levels of inbreeding. We recommend the continued management and maintenance of habitat corridors to ensure long-term viability of these endangered populations.  相似文献   

16.
识别野生动物的适宜生境并在适宜生境之间构建生态廊道能够提高生境连通性, 有利于加强种群间基因交流并缓解生境破碎化带来的不利影响。本研究基于生境适宜性评价结果确定了塔什库尔干野生动物自然保护区内马可波罗盘羊(Ovis polii)的核心生境斑块, 运用廊道设计模型Linkage Mapper识别最低成本廊道并确定其优先级。结果表明, 马可波罗盘羊适宜生境主要分布在保护区西北部, 核心生境斑块少且破碎化明显, 夏冬两季核心生境斑块均为28个, 潜在生态廊道分别为45和47条。采用成本加权距离与欧几里得距离之比(CWD : EucD)以及成本加权距离与最低成本路径长度之比(CWD : LCP)两种度量方法评估了生态廊道的质量与重要性。以CWD : EucD来衡量, 夏季质量最高的4条廊道分别是皮斯岭至帕日帕克、同库至马尔洋、科克吐鲁克至帕日帕克, 以及哈尔努孜至同库; 冬季质量最高的3条廊道分别是其克尔克尔至亚希洛夫、萨提曼至依西代尔、其克尔克尔至科克吐鲁克。CWD : LCP分析表明, 夏季质量最高的廊道分别是哈尔努孜至阔克加尔和阔克加尔至马尔洋; 冬季质量最高的廊道分别是爱勒米希至塔萨拉、沙尔比列西南至依西代尔。利用流中心性评估各核心生境斑块和廊道的重要性表明, 帕日帕克、塔萨拉和马尔洋这三个斑块在促进马可波罗盘羊迁移扩散方面的贡献值最高。夏季皮斯岭至帕日帕克、同库至马尔洋和马拉特至其克尔克尔这3条廊道的贡献值最高; 冬季爱勒米希至塔萨拉、沙尔比列至沙尔比列西南和铁尔布尔列至沙尔比列这3条廊道的贡献值最高, 上述核心生境斑块和生态廊道在维持保护区马可波罗盘羊种群迁徙扩散中发挥着关键作用。此外, 赞坎、沙尔比列等斑块虽然面积小、贡献值低, 但起到了维持景观中重要斑块连通的踏脚石作用, 其重要性也不可忽略。研究结果可为塔什库尔干野生动物保护区马可波罗盘羊有效保护、保护区功能区划优化以及当地基础建设项目的规划选址提供科学指导。  相似文献   

17.
Lake Cuitzeo basin is an important ecological area subjected to strong human pressure on forest covers that are key elements for the long-term support of biodiversity. We studied landscape connectivity changes for the years 1975, 1996, 2000, 2003 and 2008 to identify potential conservation areas in the basin. We modeled potential distributions of the Mexican bobcat (Lynx rufus escuinapae) and the ringtail (Bassariscus astutus) – two terrestrial mammal focal species with contrasting dispersal capacities – and we determined their habitat availability and suitability in the basin. We then identified their optimal habitat patches and produced landscape cumulative resistance maps, estimated least-cost paths (graph theory approach), and elaborated current flow maps (circuit theory approach). For evaluation of landscape connectivity, we applied an integral index of connectivity (IIC) to each study period, and determined individual habitat patch contribution to the overall landscape connectivity. The IIC index had very low values associated with reduced availability of focal species habitat. However, our study showed the conservation importance of the surface of optimal habitat patch areas. The combined application of a graph-based approach and current flow mapping were useful, and complementary both in terms of estimating potential dispersal corridors and identifying high probability dispersal areas. This indicated that landscape connectivity analysis is a useful tool for identification of potential conservation areas and for local landscape planning.  相似文献   

18.

Aim

There is enormous interest in applying connectivity modelling to resistance surfaces for identifying corridors for conservation action. However, the multiple analytical approaches used to estimate resistance surfaces and predict connectivity across resistance surfaces have not been rigorously compared, and it is unclear what methods provide the best inferences about population connectivity. Using a large empirical data set on puma (Puma concolor), we are the first to compare several of the most common approaches for estimating resistance and modelling connectivity and validate them with dispersal data.

Location

Southern California, USA.

Methods

We estimate resistance using presence‐only data, GPS telemetry data from puma home ranges and genetic data using a variety of analytical methods. We model connectivity with cost distance and circuit theory algorithms. We then measure the ability of each data type and connectivity algorithm to capture GPS telemetry points of dispersing pumas.

Results

We found that resource selection functions based on GPS telemetry points and paths outperformed species distribution models when applied using cost distance connectivity algorithms. Point and path selection functions were not statistically different in their performance, but point selection functions were more sensitive to the transformation used to convert relative probability of use to resistance. Point and path selection functions and landscape genetics outperformed other methods when applied with cost distance; no methods outperformed one another with circuit theory.

Main conclusions

We conclude that path or point selection functions, or landscape genetic models, should be used to estimate landscape resistance for wildlife. In cases where resource limitations prohibit the collection of GPS collar or genetic data, our results suggest that species distribution models, while weaker, may still be sufficient for resistance estimation. We recommend the use of cost distance‐based approaches, such as least‐cost corridors and resistant kernels, for estimating connectivity and identifying functional corridors for terrestrial wildlife.
  相似文献   

19.
Baird’s tapir (Tapirus bairdii) is the largest native mammal that inhabits the Neotropics, and it is enlisted as Endangered by the IUCN Red List. The historic distribution of this species included the area from southern Mexico to northern Colombia. However, its distribution and populations have been reduced drastically during the past 30 years. The main threats for Baird’s tapir are the direct persecution for subsistence hunting, habitat destruction, and habitat fragmentation. In this study, we used camera traps and occupancy models to identify the landscape characteristics that were associated with the occurrence of tapirs in the Sierra Madre de Chiapas, which is one of the most important populations of the species in Mexico, with the aim to identify areas with habitat suitability for the species. We used our best occupancy model to generate a resistance matrix to develop a model of habitat connectivity using Circuit Theory. According to the best occupancy model, the most suitable areas for this species were the forested areas located at the highest elevations of the mountain ranges that provided rugged terrain. We identified three critical corridors to allow for the connectivity of tapir populations in the Sierra Madre de Chiapas, and one of these corridors provides connectivity between this population and the population in the Ocote Biosphere Reserve. With this approach, we propose a conservation strategy for the species that incorporates a more realistic and detailed scheme of Baird’s tapir occurrence in the Sierra Madre de Chiapas region. Priority actions to conserve tapirs in the Sierra Madre de Chiapas over the long term include ensuring the complete protection of prime habitat for the species, improved connectivity by protecting forest cover, implementation mitigation measures in areas where paved roads interrupt connectivity of populations, and eradicating poaching of the species in the region completely.  相似文献   

20.
沈舟  尹海伟  孔繁花  苏杰  孙辉  李久林 《生态学报》2024,44(8):3303-3316
保持生境连通性是全球生物多样性保护面临的主要挑战之一。生境网络构建与优化是一种积极主动的景观策略,但其成效取决于异质性景观背景下生境分布格局与物种响应。以南京市为例、白鹭为目标物种,开展了基于生境组团化分析与景观廊道(LSCorridors)模拟的生境网络构建与优化研究。通过整合生境适宜性评价、干扰度评价、最大熵(MaxEnt)模型模拟,实现了物种生境源地综合识别;利用景观连通性指标与核密度分析,识别了物种生境分布的组团化格局;在最小成本路径(LCPs)的基础上,定义了优化新增型与提升型两类廊道,并从物种感知与适应性变化出发,应用LSCorridors软件模拟了这两类目标优化廊道的多重随机路径及其空间范围。结果表明,南京市白鹭生境斑块共计428个,总面积达31525.75 hm2,主要是林地与水域,具有较为明显的破碎化和局部集聚特征,九大生境组团以南京长江段水域斑块为轴,沿两侧分布,彼此联系比较薄弱;最佳距离阈值4.5 km内,识别LCPs共907条,总长度1548.59 km,平均较短、分布紧凑,主要位于各生境组团内部,但仅少数连接着不同生境组团;确定的8条优化新增型廊道和10条优化提升型廊道,其LSCorridors模拟结果与LCPs存在空间偏差,前者更符合现实进而有益于避免保护低效和促进多类型、差异化的优化措施制定。研究成果能为面向生物多样性保护的南京市生境网络保护以及重点生态廊道的规划实践提供决策参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号