首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoprotein ppUL44 of the human cytomegalovirus (HCMV) DNA polymerase plays an essential role in viral replication, conferring processivity to the DNA polymerase catalytic subunit pUL54 by tethering it to the DNA. Here, for the first time, we examine in living cells the function of the highly flexible loop of ppUL44 (UL44-FL; residues 162 to 174 [PHTRVKRNVKKAP174]), which has been proposed to be directly involved in ppUL44''s interaction with DNA. In particular, we use a variety of approaches in transfected cells to characterize in detail the behavior of ppUL44Δloop, a mutant derivative in which three of the five basic residues within UL44-FL are replaced by nonbasic amino acids. Our results indicate that ppUL44Δloop is functional in dimerization and binding to pUL54 but strongly impaired in binding nuclear structures within the nucleus, as shown by its inability to form nuclear speckles, reduced nuclear accumulation, and increased intranuclear mobility compared to wild-type ppUL44. Moreover, analysis of cellular fractions after detergent and DNase treatment indicates that ppUL44Δloop is strongly reduced in DNA-binding ability, in similar fashion to ppUL44-L86A/L87A, a point mutant derivative impaired in dimerization. Finally, ppUL44Δloop fails to transcomplement HCMV oriLyt-dependent DNA replication in cells and also inhibits replication in the presence of wild-type ppUL44, possibly via formation of heterodimers defective for double-stranded DNA binding. UL44-FL thus emerges for the first time as an important determinant for HCMV replication in cells, with potential implications for the development of novel antiviral approaches by targeting HCMV replication.The Betaherpesviridae subfamily member human cytomegalovirus (HCMV) is a major human pathogen, causing serious disease in newborns following congenital infection and in immunocompromised individuals (28, 42). Replication of its double-stranded DNA (dsDNA) genome occurs in the nuclei of infected cells via a rolling-circle process mediated by 11 virally encoded proteins (32, 33), including a viral DNA polymerase holoenzyme, comprising a catalytic subunit, pUL54, and a proposed processivity factor, ppUL44 (14). ppUL44 is readily detectable in virus-infected cells as a 52-kDa phosphoprotein of 433 amino acids with strong dsDNA-binding ability (30, 45). Defined as a “polymerase accessory protein” (PAP) whose function is highly conserved among herpesviruses, ppUL44 is an essential factor for viral replication in cultured cells and hence represents a potential therapeutic target to combat HCMV infection (39). It is a multifunctional protein capable of self-associating (5, 10), as well as interacting with a plethora of viral and host cell proteins, including the viral kinase pUL97 (29), the viral transactivating protein pUL84 (15), the viral uracil DNA glycosylase ppUL114 (37), and the host cell importin α/β (IMPα/β) heterodimer, which is responsible for its transport into the nucleus (4). The activities of ppUL44 as a processivity factor, including the ability to dimerize, as well as bind to, pUL54 and DNA, reside in the N-terminal portion (26, 45), whereas the C terminus is essential for phosphorylation-regulated, IMPα/β-dependent nuclear targeting of ppUL44 monomers and dimers (4-6). Once within the nucleus, ppUL44 is thought to tether the DNA polymerase holoenzyme to the DNA, thus increasing its processivity (14).Recent studies have identified specific residues responsible for ppUL44 interaction with pUL54, as well as for the interaction with IMPα/β and homodimerization (4, 10, 27, 41). The crystal structure of ppUL44''s N-terminal domain (Fig. (Fig.1A)1A) reveals striking similarity to that of other processivity factors, such as proliferating cell nuclear antigen (PCNA) and its herpes simplex virus type 1 (HSV-1) homologue UL42 (10, 46). Unlike the PCNA trimeric ring, however, both ppUL44 and UL42, which bind to dsDNA as dimers and monomers, respectively, have an open structure, which is believed to be the basis for their ability to bind to dsDNA in the absence of clamp loaders and ATP (9, 10, 46). Both ppUL44 and UL42 share a very basic “back” face, which appears to be directly involved in DNA binding via electrostatic interactions (19, 22, 23, 38, 46). One striking difference between ppUL44 and UL42 is the presence on the former of an extremely basic flexible loop (UL44-FL, PHTRVKRNVKKAP174) protruding from the basic back face of the protein (Fig. (Fig.1A).1A). Comparison of ppUL44 homologues from different betaherpesviruses, including human herpesvirus 6 (HHV-6) and 7 (HHV-7), showed that all possess similar sequences in the same position (44) (Fig. (Fig.1B),1B), implying functional significance.Open in a separate windowFIG. 1.The highly conserved flexible loop (residues 162 to 174) within ppUL44 protrudes from ppUL44 basic face and is important for efficient nuclear accumulation and localization in nuclear speckles. (A) Schematic representation of ppUL44 N-terminal domain (residues 9 to 270, protein data bank accession no. 1T6L) generated using the Chimera software based on the published crystal structure (10, 35). Color: yellow, β-sheets; red, α-helices. Residues involved in ppUL44 dimerization (P85, L86, L87, L93, F121, and M123), as well as basic residues potentially involved in DNA binding (K21, R28, K32, K35, K128, K158, K224, and K237), are represented as spacefill in orange and green, respectively. Residues P162 and C175, in black, are indicated by arrowheads, while residues 163 to 174 are not visible in the electron density maps and could potentially extend in the cavity formed by ppUL44''s basic face to directly contact DNA. Residues forming ppUL44 connector loop (128-142) are in blue. (B) Sequence alignment between HCMVUL44-FL and the corresponding region of several betaherpesvirus ppUL44 homologues. The single-letter amino acid code is used, with basic residues in boldface. (C) COS-7 cells were transfected to express the indicated GFP fusion proteins and imaged live 16 h after transfection using CLSM and a 40× water immersion objective lens. (D) Quantitative results for the Fn/c and speckle formation for GFP-UL44 fusion proteins. The data for the Fn/c ratios represent the mean Fn/c relative to each protein indicated as a percentage of the mean Fn/c relative to GFP-UL44wt ± the standard error of the mean, with the number of analyzed cells in parentheses. (E) HEK 293 cells expressing the indicated GFP-UL44 fusion proteins were lysed, separated by PAGE, and analyzed by Western blotting as described in Materials and Methods, using either the anti-GFP or the anti-α-tubulin MAbs.A recent study revealed that substitution of UL44-FL basic residues with alanine residues strongly impairs the ability of a bacterially expressed N-terminal fragment of UL44 to bind 30-bp dsDNA oligonucleotides in vitro, suggesting that UL44-FL could be involved in dsDNA-binding during viral replication (22). However, the role of UL44-FL in mediating the binding of full-length UL44 to dsDNA in cells and its role in DNA replication have not been investigated. We use here a variety of approaches to delineate the role of UL44-FL in living cells, our data revealing that UL44-FL is not required for ppUL44 dimerization or binding to the catalytic subunit pUL54 but is crucial for HCMV oriLyt-dependent DNA replication, being required for the formation of nuclear aggregates, nuclear accumulation/retention, and DNA binding of ppUL44. Importantly, ppUL44Δloop exhibits a transdominant-negative phenotype, inhibiting HCMV oriLyt-dependent DNA replication in the presence of wild-type ppUL44, possibly via formation of heterodimers defective for dsDNA binding. This underlines ppUL44-FL as an important determinant for HCMV replication in a cellular context for the first time, with potential implications for the development of novel antiviral approaches.  相似文献   

2.
3.
The amino-terminal 290 residues of UL44, the presumed processivity factor of human cytomegalovirus DNA polymerase, possess all of the established biochemical activities of the full-length protein, while the carboxy-terminal 143 residues contain a nuclear localization signal (NLS). We found that although the amino-terminal domain was sufficient for origin-dependent synthesis in a transient-transfection assay, the carboxy-terminal segment was crucial for virus replication and for the formation of DNA replication compartments in infected cells, even when this segment was replaced with a simian virus 40 NLS that ensured nuclear localization. Our results suggest a role for this segment in viral DNA synthesis.Human cytomegalovirus (HCMV) encodes a DNA polymerase which is composed of two subunits, UL54, the catalytic subunit, and UL44, an accessory protein (8, 12, 21). UL44 can be divided into two regions, a 290-residue amino (N)-terminal domain and a 143-residue carboxy (C)-terminal segment. The overall fold of the N-terminal domain is markedly similar to that of processivity factors such as herpes simplex virus type 1 (HSV-1) UL42 and eukaryotic proliferating cell nuclear antigen (6, 22, 41), which function to tether catalytic subunits to DNA to ensure long-chain DNA synthesis. In vitro, the N-terminal domain of UL44 is sufficient for all of the established biochemical activities of full-length UL44, including dimerization, binding to double-stranded DNA, interaction with UL54, and stimulation of long-chain DNA synthesis, consistent with a role as a processivity factor (4, 5, 8, 11, 23, 24, 39). In contrast, little is known about the functions of the C-terminal segment of UL44 other than its having been reported from transfection experiments to be important for downregulation of transactivation of a non-HCMV promoter (7) and to contain a nuclear localization signal (NLS) (3). Neither the importance of this NLS nor the role of the entire C-terminal segment has been investigated in HCMV-infected cells.We first examined whether the N-terminal domain is sufficient to support DNA synthesis from HCMV oriLyt in cells using a previously described cotransfection-replication assay (27, 28). A DpnI-resistant fragment, indicative of oriLyt-dependent DNA synthesis, was detected in the presence of wild-type (WT) UL44 (pSI-UL44) (34) and in the presence of the UL44 N-terminal domain (pSI-UL44ΔC290), but not in the presence of UL44-F121A (6, 34), a mutant form previously shown not to support oriLyt-dependent DNA synthesis (34) (Fig. (Fig.1A).1A). Thus, the N-terminal domain alone is sufficient to support oriLyt-dependent DNA synthesis in a transient-transfection assay.Open in a separate windowFIG. 1.Effects of UL44 C-terminal truncations in various assays. (A) HFF cells were cotransfected with the pSP50 plasmid (containing the oriLyt DNA replication origin), a plasmid expressing WT or mutant UL44 (as indicated at the top of the panel), and plasmids expressing all of the other essential HCMV DNA replication proteins. At 5 days posttransfection, total DNA was extracted and cleaved with DpnI to digest unreplicated DNA and a Southern blot assay was performed to detect replicated pSP50. An arrow indicates DpnI-resistant, newly synthesized pSP50 fragments. (B) FLAG-tagged constructs analyzed in panel C are cartooned as horizontal bars. The names of the constructs are above the bars. The lengths of the constructs in amino acids are indicated by the scale at the bottom of the panel. The positions of residues required but not necessarily sufficient for features of the constructs are designated by shading, as indicated at the bottom of the panel. (C) Vero cells were transfected with plasmids expressing WT UL44 (parts a to c), FLAG-UL44 (parts d to f), FLAG-UL44-290stop (parts g to i), or FLAG-UL44-290NLSstop (parts j to l). At 48 h posttransfection, cells were fixed and stained with 4′,6-diamidino-2-phenylindole (DAPI) to visualize the nucleus (blue) (parts a, d, g, and j) and by IF with anti-UL44 (part b) or anti-FLAG (parts e, h, and k) and a secondary antibody conjugated with Alexa 488 (green). Parts c, f, i, and l are merged from images in the left and middle columns. Magnification: ×1,000. (D) Replication kinetics of rescued viruses. Rescued derivatives of UL44 mutant viruses (UL44-290stop-R and UL44-290NLSstop-R) or WT AD169 viruses were used to infect HFF cells at an MOI of 1 PFU/cell. The supernatants from infected cells were collected every 24 h, and viral titers were determined by plaque assays on HFF cells.These results were somewhat unexpected, as the C-terminal segment contains a functional NLS identified in transfection assays (3). We therefore assayed the intracellular localization of WT and mutant UL44 following transient transfection using pcDNA3-derived expression plasmids. Since the anti-UL44 antibodies that we have tested do not recognize the N-terminal domain of UL44, we constructed UL44 genes to encode N-terminally FLAG-tagged full-length UL44 (FLAG-UL44) or a FLAG-tagged N-terminal domain, the latter by inserting three in-frame tandem stop codons after codon 290 (FLAG-UL44-290stop, Fig. Fig.1B).1B). We also constructed a mutant form encoding a FLAG-tagged N-terminal domain, followed by the simian virus 40 (SV40) T-antigen NLS (15-17), followed by three tandem stop codons (FLAG-UL44-290NLSstop, Fig. Fig.1B).1B). Vero cells were transfected with each construct using Lipofectamine 2000, fixed with 4% formaldehyde at 48 h posttransfection, and assayed by indirect immunofluorescence (IF) using anti-UL44 (Virusys) or anti-FLAG antibody (Sigma). We observed mostly nuclear localization of WT UL44 or FLAG-UL44 with either diffuse or more localized intranuclear distribution (Fig. (Fig.1C,1C, parts a to c and d to f, respectively) and some occasional perinuclear staining, which may be due to protein overexpression. In cells expressing FLAG-UL44-290NLSstop, we observed mostly diffuse nuclear localization with little to no perinuclear staining (Fig. (Fig.1C,1C, parts j to l). In cells expressing FLAG-UL44-290stop, we observed mostly cytoplasmic staining, but with some cells exhibiting some nuclear staining (Fig. (Fig.1C,1C, parts g to i), which may explain the ability of truncated UL44 to support oriLyt-dependent DNA replication in a transient-transfection assay (Fig. (Fig.1A1A).We next investigated whether the C-terminal segment of UL44 is necessary for viral replication. We reasoned that we could investigate whether any requirement for this segment could be due to a requirement for an NLS by testing whether the SV40 NLS could substitute for the loss of the UL44 C terminus. We therefore constructed HCMV UL44 mutant viruses by introducing the UL44-290stop and UL44-290NLSstop mutations into a WT AD169 bacterial artificial chromosome (BAC) using two-step red-mediated recombination as previously described (35, 38). We also constructed the same mutants with a FLAG epitope at the N terminus of UL44 (BAC-FLAG-UL44-290stop and BAC-FLAG-UL44-290NLSstop) to monitor UL44 expression, and we constructed rescued derivatives of the mutant BACs by replacing the mutated sequences with WT UL44 sequences, as described previously (35). We introduced BACs into human foreskin fibroblast (HFF) cells using electroporation (35, 38). In several experiments using at least two independent clones for each mutant, cells electroporated with any of the mutant BACs did not exhibit any cytopathic effect (CPE) within 21 days. In contrast, within 7 to 10 days, cells electroporated with the WT AD169 BAC, a BAC expressing WT UL44 with an N-terminal FLAG tag [AD169-BACF44 (35)], or any of the rescued derivatives began displaying a CPE and yielded infectious virus. The rescued derivatives of the nontagged mutants displayed replication kinetics similar to those of the WT virus following infection at a multiplicity of infection (MOI) of 1 PFU/cell (Fig. (Fig.1D).1D). The rescued derivatives of the FLAG-tagged mutants also replicated to WT levels (data not shown). Thus, the replication defects of the mutants were due to the introduced mutations that result in truncated UL44 either with or without the SV40 NLS. We therefore conclude that the C-terminal segment of UL44 is required for viral replication.To investigate the stage of viral replication at which the UL44 C-terminal segment is important, we first assayed the subcellular localization of immediate-early proteins IE1 and IE2 and FLAG-UL44 in cells electroporated with BAC DNA expressing the FLAG-tagged WT or the two mutant UL44s using IF at 2 days postelectroporation. IE1/IE2 could be detected diffusely distributed in nuclei of cells electroporated with all three BACs (Fig. 2b, f, and j). In cells electroporated with AD169-BACF44 or BAC-FLAG-UL44-290NLSstop, FLAG-UL44 was localized largely within the nucleus (Fig. 2c and k, respectively). In contrast, in cells electroporated with BAC-FLAG-UL44-290stop, the FLAG epitope was mainly localized diffusely in the cytoplasm, with only a small amount diffusely distributed in the nucleus (Fig. (Fig.2g).2g). These data indicate that IE proteins expressed from mutant BACs are properly localized and suggest that without its C-terminal segment, which includes the NLS identified in transfection assays (3), UL44 cannot efficiently localize to the nucleus in HCMV-infected cells. However, addition of the SV40 NLS was sufficient to efficiently localize the N-terminal domain of UL44 to the nucleus. Thus, the requirement for the C-terminal segment of UL44 for viral replication is not due solely to its NLS.Open in a separate windowFIG. 2.Localization of IE1/IE2 and FLAG-UL44 proteins in electroporated cells. HFF cells were electroporated with AD169-BACF44 (panels a to d), BAC-UL44-290stop (panels e to h), or BAC-FLAG-UL44-290NLSstop (panels i to l). At 48 h posttransfection, cells were fixed and probed with anti-IE1/2 (Virusys) or anti-FLAG (Sigma). Secondary antibodies coupled to fluorophores were used for visualization of IE1/2 (anti-mouse Alexa 594; panels b, f, and j) and FLAG (anti-rabbit Alexa 488; panels c, g, and k) antibodies. DAPI was used to counterstain the nucleus (panels a, e, and i). Panels d, h, and l are merged images of the panels in the other columns. Magnification: ×1,000.We next investigated if the block in viral replication due to the loss of the C-terminal segment could be attributed to a defect in viral DNA synthesis. Cells were electroporated with AD169-BACF44 or BAC-FLAG-UL44-290NLSstop, and viral DNA accumulation was assayed by quantitative real-time PCR at various times postelectroporation (Fig. (Fig.3)3) as previously described (32, 35). In HFFs electroporated with AD169-BACF44, viral DNA began to accumulate above the input levels by 8 days postelectroporation and increased over time, with as much as a 350-fold increase over the input DNA level by 18 days postelectroporation. In contrast, levels of viral DNA in cells electroporated with BAC-UL44-290NLSstop did not increase above input levels, even by 18 days postelectroporation. These data are consistent with the notion that the UL44 C-terminal segment is required for viral DNA synthesis, although we caution that the assay did not detect DNA synthesis from AD169-BACF44 until day 8, when viral spread had likely occurred (see below).Open in a separate windowFIG. 3.Quantification of viral DNA accumulation in electroporated cells. HFF cells were electroporated with AD169-BACF44 or BAC-FLAG-UL44-290NLSstop, and total DNA was harvested on the days postelectroporation indicated. Viral DNA accumulation was assessed by real-time PCR by assessing levels of the UL83 gene and normalizing to levels of the cellular β-actin gene (32). The data are presented as the fold increase in normalized viral DNA levels over the amount of input DNA (day 1).We also analyzed the localization patterns of UL44 and UL57, the viral single-stranded DNA binding protein, which is a marker for viral DNA replication compartments (1, 2, 18, 26, 29). At 8 days postelectroporation with AD169-BACF44, UL57 and FLAG-UL44 largely colocalized within a single large intranuclear structure that likely represents a fully formed replication compartment, with some cells containing multiple smaller globular structures within the nucleus that likely represent earlier stages of replication compartments (1, 2, 29) (Fig. 4a to d). Neighboring cells also stained for UL57 and FLAG-UL44, indicative of viral spread. In contrast, in cells electroporated with BAC-FLAG-UL44-290NLSstop, UL57 (Fig. (Fig.4f)4f) was found in either punctate or small globular structures. This pattern of UL57 staining resembled that observed at very early stages of viral DNA synthesis in HCMV-infected cells, but the structures were larger and less numerous than those observed in HCMV-infected cells in the presence of a viral DNA polymerase inhibitor (2, 29). Staining for FLAG-UL44 was nuclear and largely diffuse, with some areas of more concentrated staining (Fig. (Fig.4g),4g), which could also be observed in some cells at day 2 postelectroporation (Fig. (Fig.3k).3k). This pattern of UL44 localization was generally similar to that observed in HCMV-infected cells at very early stages of infection or when HCMV DNA synthesis is blocked and also similar to the pattern in cells transfected with a UL84 null mutant BAC (2, 29, 33, 40). Importantly, little colocalization of UL57 and UL44 was observed, with areas of concentration of UL57 or UL44 occupying separate regions in the nuclei of these cells (Fig. (Fig.4h).4h). We are unaware of any other examples of this pattern of localization of these proteins in HCMV-infected cells and suggest that it may be a result of the loss of the UL44 C-terminal segment. These results indicate that this segment is important for efficient formation of viral DNA replication compartments, again consistent with a requirement for this portion of UL44 for viral DNA synthesis.Open in a separate windowFIG. 4.Localization of UL57 and FLAG-UL44 proteins in electroporated cells. HFF cells were electroporated with AD169-BACF44 (panels a to d) or BAC-FLAG-UL44-290NLSstop (panels e to h). At 8 days posttransfection, cells were fixed and then stained with antibodies specific for UL57 (Virusys) or FLAG (Sigma), followed by a secondary antibody coupled to fluorophores to detect UL57 (anti-mouse Alexa 594; panels b and f) and FLAG (anti-rabbit Alexa 488; panels c and g) antibodies. DAPI stain was used to counterstain the nucleus (panels a and e). Panels d and h are merged images of the panels in the other columns. White arrows identify punctate UL57 staining. Yellow arrows identify areas of concentration of FLAG-UL44 staining. Magnification: ×1,000.Our results, taken together, argue for a role for the C-terminal segment of UL44 in HCMV-infected cells in efficient nuclear localization of UL44 and a role in viral DNA synthesis beyond its role in nuclear localization. It is possible that this segment interacts with host or viral proteins involved in DNA replication. Of the various proteins reported to interact with UL44 (10, 19, 30, 31, 35-37), interesting candidates include the host protein nucleolin, which has been shown to associate with UL44 and be important for viral DNA synthesis (35), and the viral UL112-113 proteins, which in transfection assays were shown to recruit UL44 to early sites of DNA replication (2, 29, 33). After this paper was submitted, Kim and Ahn reported that the C-terminal segment of UL44 is necessary for interaction with a UL112-113 protein and, similar to our findings, crucial for viral replication (19). However, contrary to our findings, they reported that this segment was not necessary for efficient nuclear localization of UL44 (19). It may well be that the C-terminal segment of UL44 also has some other role later in viral replication, perhaps in gene expression, as has been suggested (7, 13, 14).A virus with a deletion of the C-terminal 150 amino acids of the HSV-1 polymerase accessory subunit UL42 displays no obvious defect in replication (9). Thus, it appears that HSV-1 and HCMV exhibit different requirements for the C-terminal segments of their respective accessory proteins. This and many other differences between these functionally and structurally orthologous proteins (5, 6, 20, 24, 25) suggest considerable selection for different features during evolution.  相似文献   

4.
5.
6.
7.
The CTCF Insulator Protein Is Posttranslationally Modified by SUMO   总被引:1,自引:0,他引:1  
The CTCF protein is a highly conserved zinc finger protein that is implicated in many aspects of gene regulation and nuclear organization. Its functions include the ability to act as a repressor of genes, including the c-myc oncogene. In this paper, we show that the CTCF protein can be posttranslationally modified by the small ubiquitin-like protein SUMO. CTCF is SUMOylated both in vivo and in vitro, and we identify two major sites of SUMOylation in the protein. The posttranslational modification of CTCF by the SUMO proteins does not affect its ability to bind to DNA in vitro. SUMOylation of CTCF contributes to the repressive function of CTCF on the c-myc P2 promoter. We also found that CTCF and the repressive Polycomb protein, Pc2, are colocalized to nuclear Polycomb bodies. The Pc2 protein may act as a SUMO E3 ligase for CTCF, strongly enhancing its modification by SUMO 2 and 3. These studies expand the repertoire of posttranslational modifications of CTCF and suggest roles for such modifications in its regulation of epigenetic states.  相似文献   

8.
Consistent with earlier analyses of human cytomegalovirus UL36 mRNA, we find that the UL36 protein is present throughout infection. In fact, it is delivered to the infected cell as a constituent of the virion. Curiously, much less UL36 protein accumulated in cells infected with the AD169 strain of human cytomegalovirus than in cells infected with the Towne or Toledo strain, and localization of the protein in cells infected with AD169 is strikingly different from that in cell infected with the Towne or Toledo strain. The variation in steady-state level of the proteins results from different stabilities of the proteins. The UL36 proteins from the three viral strains differ by several amino acid substitutions. However, this variability is not responsible for the different half-lives because the AD169 and Towne proteins, which exhibit very different half-lives within infected cells, exhibit the same half-life when introduced into uninfected cells by transfection with expression plasmids. We demonstrate that the UL36 protein is nonessential for growth in cultured cells, and we propose that the ability of the virus to replicate in the absence of UL36 function likely explains the striking strain-specific variation in the half-life and intracellular localization of the protein.  相似文献   

9.
Three hundred and twenty-five breast milk samples were examined for the occurrence of human cytomegalovirus (HCMV) by cell culture method. Virus was isolated from the milk in 1 of 177 samples collected within 6 days after delivery, 2 of 115 samples collected during the period of 7 days to 1 month after delivery, 10 of 33 samples collected over 1 month after delivery. Next, we tried to amplify HCMV DNA from the breast milk samples from HCMV seropositive mothers and seronegative mothers at 1 month after delivery by polymerase chain reaction. HCMV DNA was detected in 12 of 13 samples from seropositive mothers and in none of 7 samples from seronegative mothers. It was thought that all women seropositive for HCMV principally shed the virus into their breast milk at 1 month after delivery.  相似文献   

10.
Herpes simplex virus DNA polymerase consists of a catalytic subunit, Pol, and a processivity subunit, UL42, that, unlike other established processivity factors, binds DNA directly. We used gel retardation and filter-binding assays to investigate how UL42 affects the polymerase-DNA interaction. The Pol/UL42 heterodimer bound more tightly to DNA in a primer-template configuration than to single-stranded DNA (ssDNA), while Pol alone bound more tightly to ssDNA than to DNA in a primer-template configuration. The affinity of Pol/UL42 for ssDNA was reduced severalfold relative to that of Pol, while the affinity of Pol/UL42 for primer-template DNA was increased ~15-fold relative to that of Pol. The affinity of Pol/UL42 for circular double-stranded DNA (dsDNA) was reduced drastically relative to that of UL42, but the affinity of Pol/UL42 for short primer-templates was increased modestly relative to that of UL42. Pol/UL42 associated with primer-template DNA ~2-fold faster than did Pol and dissociated ~10-fold more slowly, resulting in a half-life of 2 h and a subnanomolar Kd. Despite such stable binding, rapid-quench analysis revealed that the rates of elongation of Pol/UL42 and Pol were essentially the same, ~30 nucleotides/s. Taken together, these studies indicate that (i) Pol/UL42 is more likely than its subunits to associate with DNA in a primer-template configuration rather than nonspecifically to either ssDNA or dsDNA, and (ii) UL42 reduces the rate of dissociation from primer-template DNA but not the rate of elongation. Two models of polymerase-DNA interactions during replication that may explain these findings are presented.  相似文献   

11.
12.
13.
The accessory protein polymerase (pol) γB of the human mitochondrial DNA polymerase stimulates the synthetic activity of the catalytic subunit. pol γB functions by both accelerating the polymerization rate and enhancing polymerase-DNA interaction, thereby distinguishing itself from the accessory subunits of other DNA polymerases. The molecular basis for the unique functions of human pol γB lies in its dimeric structure, where the pol γB monomer proximal to pol γA in the holoenzyme strengthens the interaction with DNA, and the distal pol γB monomer accelerates the reaction rate. We further show that human pol γB exhibits a catalytic subunit- and substrate DNA-dependent dimerization. By duplicating the monomeric pol γB of lower eukaryotes, the dimeric mammalian proteins confer additional processivity to the holoenzyme polymerase.  相似文献   

14.
The human cytomegalovirus DNA polymerase consists of a catalytic subunit, UL54, and a presumed processivity factor, UL44. We have solved the crystal structure of residues 1-290 of UL44 to 1.85 A resolution by multiwavelength anomalous dispersion. The structure reveals a dimer of UL44 in the shape of a C clamp. Each monomer of UL44 shares its overall fold with other processivity factors, including herpes simplex virus UL42, which is a monomer that binds DNA directly, and the sliding clamp, PCNA, which is a trimer that surrounds DNA, although these proteins share no obvious sequence homology. Analytical ultracentrifugation and gel filtration measurements demonstrated that UL44 also forms a dimer in solution, and substitution of large hydrophobic residues along the homodimer interface with alanine disrupted dimerization and decreased DNA binding. UL44 represents a hybrid processivity factor as it binds DNA directly like UL42, but forms a C clamp that may surround DNA like PCNA.  相似文献   

15.
LARP4 is a protein with unknown function that independently binds to poly(A) RNA, RACK1, and the poly(A)-binding protein (PABPC1). Here, we report on its regulation. We found a conserved AU-rich element (ARE) in the human LARP4 mRNA 3′ untranslated region (UTR). This ARE, but not its antisense version or a point-mutated version, significantly decreased the stability of β-globin reporter mRNA. We found that overexpression of tristetraprolin (TTP), but not its RNA binding mutant or the other ARE-binding proteins tested, decreased cellular LARP4 levels. RNA coimmunoprecipitation showed that TTP specifically associated with LARP4 mRNA in vivo. Consistent with this, mouse LARP4 accumulated to higher levels in TTP gene knockout (KO) cells than in control cells. Stimulation of WT cells with tumor necrosis factor alpha (TNF-α), which rapidly induces TTP, robustly decreased LARP4 with a coincident time course but had no such effect on LARP4B or La protein or on LARP4 in the TTP KO cells. The TNF-α-induced TTP pulse was followed by a transient decrease in LARP4 mRNA that was quickly followed by a subsequent transient decrease in LARP4 protein. Involvement of LARP4 as a target of TNF-α–TTP regulation provides a clue as to how its functional activity may be used in a physiologic pathway.  相似文献   

16.
17.
Gene 5 protein (gp5) of bacteriophage T7 is a non-processive DNA polymerase. It achieves processivity by binding to Escherichia coli thioredoxin (trx). gp5/trx complex binds tightly to a primer-DNA template enabling the polymerization of hundreds of nucleotides per binding event. gp5 contains 10 cysteines. Under non-reducing condition, exposed cysteines form intermolecular disulfide linkages resulting in the loss of polymerase activity. No disulfide linkage is detected when Cys-275 and Cys-313 are replaced with serines. Cys-275 and Cys-313 are located on loop A and loop B of the thioredoxin binding domain, respectively. Replacement of either cysteine with serine (gp5-C275S, gp5-C313S) drastically decreases polymerase activity of gp5 on dA350/dT25. On this primer-template gp5/trx in which Cys-313 or Cys-275 is replaced with serine have 50 and 90%, respectively, of the polymerase activity observed with wild-type gp5/trx. With single-stranded M13 DNA as a template gp5-C275S/trx retains 60% of the polymerase activity of wild-type gp5/trx. In contrast, gp5-C313S/trx has only one-tenth of the polymerase activity of wild-type gp5/trx on M13 DNA. Both wild-type gp5/trx and gp5-C275S/trx catalyze the synthesis of the entire complementary strand of M13 DNA, whereas gp5-C313S/trx has difficulty in synthesizing DNA through sites of secondary structure. gp5-C313S fails to form a functional complex with trx as measured by the apparent binding affinity as well as by the lack of a physical interaction with thioredoxin during hydroxyapatite-phosphate chromatography. Small angle x-ray scattering reveals an elongated conformation of gp5-C313S in comparison to a compact and spherical conformation of wild-type gp5.  相似文献   

18.
Peptide sequences obtained from the accessory subunit of Xenopus laevis mitochondrial DNA (mtDNA) polymerase gamma (pol gamma) were used to clone the cDNA encoding this protein. Amino-terminal sequencing of the mitochondrial protein indicated the presence of a 44-amino-acid mitochondrial targeting sequence, leaving a predicted mature protein with 419 amino acids and a molecular mass of 47.3 kDa. This protein is associated with the larger, catalytic subunit in preparations of active mtDNA polymerase. The small subunit exhibits homology to its human, mouse, and Drosophila counterparts. Interestingly, significant homology to glycyl-tRNA synthetases from prokaryotic organisms reveals a likely evolutionary relationship. Since attempts to produce an enzymatically active recombinant catalytic subunit of Xenopus DNA pol gamma have not been successful, we tested the effects of adding the small subunit of the Xenopus enzyme to the catalytic subunit of human DNA pol gamma purified from baculovirus-infected insect cells. These experiments provide the first functional evidence that the small subunit of DNA pol gamma stimulates processive DNA synthesis by the human catalytic subunit under physiological salt conditions.  相似文献   

19.
RNase P核酶对人巨细胞病毒UL54基因mRNA体外切割作用   总被引:2,自引:0,他引:2  
外部引导序列(EGSs)是mRNA靶序列互补并引导RNase P切割的小RNA片段.我们设计与人巨细胞病毒HCMV(Human Cytomegalovirus) UL54基因mRNA序列互补的EGSs,将其与大肠杆菌来源RNase P催化核心M1 RNA构建成M1GS核酶.通过对UL54基因亚克隆片转录产物体外切割研究,证实该核酶具备对UL54 mRNA片段的特异切割能力,可以发展成为一种抗病毒试剂.  相似文献   

20.
外部引导序列(EGSs)是mRNA靶序列互补并引导RNaseP切割的小RNA片段。我们设计与人巨细胞病毒HCMV(Human Cytomegalovirus)UL54基因mRNA序列互补的EGSs,将其与大肠杆菌来源RNaseP催化核心M1RNA构建成M1GS核酶。通过对UL54基因亚克降片转录产物体外切割研究,证实该核酶具备对UL54 mRNA片段的特异切割能力,可以发展成为一种抗病毒试剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号