首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The family of Eph tyrosine kinase receptors is an important part of signaling pathways involved in development, tissue homeostasis and tumorigenesis. Binding and activation of the receptors by their ligands, the ephrins, result in bidirectional signaling into both receptor and ligand expressing cells. Adult stem cell niches and tumors frequently express receptors and ligands, although their function is only beginning to be understood. Thus, Eph receptors and ephrins have become important molecules for understanding basic biological processes as well as tumorigenesis, and are promising targets for potential therapeutic intervention in human disease.  相似文献   

2.
The Eph receptors are the largest known family of receptor tyrosine kinases. The Eph receptors and their membrane-attached ligands, ephrins, show diverse expression patterns during development. Recent studies have demonstrated that Eph receptors and ephrins play important roles in many developmental processes, including neuronal network formation, the patterning of the neural tube and the paraxial mesoderm, the guidance of cell migration, and vascular formation. In the nervous system, Eph receptors and ephrins have been shown to act as positional labels to establish topographic projections. They also play a key role in pathway finding by axons and neural crest cells. The crucial roles of Eph receptors and ephrins during development suggest involvement of these genes in congenital disorders affecting the nervous system and other tissues. It has also been suggested that Eph receptors and ephrins may be involved in carcinogenesis. It is therefore of clinical importance to further analyse the function of these molecules, as manipulation of their function may have therapeutic applications.  相似文献   

3.
Eph receptors and ephrins   总被引:4,自引:0,他引:4  
Eph receptors, the largest subfamily of receptor tyrosine kinases (RTKs), and their ephrin ligands are important mediators of cell-cell communication regulating cell attachment, shape, and mobility. Eph signaling is crucial for the development of many tissues and organs including the nervous and cardiovascular systems. Both Ephs and ephrins are membrane-bound and their interactions at sites of cell-cell contact initiate unique bi-directional signaling cascades where information is transduced in both the receptor- and the ligand-expressing cells. Recent studies summarized in this review reveal how the signaling process is triggered upon ligand-receptor binding via the formation of a 2:2 circular heterotetramer. This fixes the orientation of the participating molecules and facilitates phosphorylation of their cytoplasmic domains which then interact with downstream signaling factors. The elucidation of the structural details of Eph-ephrin recognition and binding should yield insight into the future development of novel therapeutic agents targeting cardiovascular function, nerve regeneration, and cancer.  相似文献   

4.
The role of ephrins and Eph receptors in cancer   总被引:10,自引:0,他引:10  
Eph receptors are the largest receptor tyrosine kinase family of transmembrane proteins with an extracellular domain capable of recognizing signals from the cells’ environment and influencing cell–cell interaction and cell migration. Ephrins are the ligands to Eph receptors and stimulate bi-directional signaling of the Eph/ephrin axis. Eph receptor and ephrin overexpression can result in tumorigenesis as related to tumor growth and survival and is associated with angiogenesis and metastasis in many types of human cancer. Recent data suggest that Eph/ephrin signaling could play an important role in the development of novel inhibition strategies and cancer treatments to potentially target this receptor tyrosine kinase and/or its ligand. A deeper understanding of the molecular basis for normal versus defective cell–cell interaction through the Eph/ephrin axis will enable the potential development of novel cancer treatments. This review emphasizes the biology of Eph/ephrin as well as the potential for novel targeted therapy through this pathway.  相似文献   

5.
Eph receptor tyrosine kinases and their ephrin ligands are involved in various signalling pathways and mediate critical steps of a wide variety of physiological and pathological processes. Increasing experimental evidence demonstrates that both Eph receptor and ephrin ligands are overexpressed in a number of human tumours, and are associated with tumour growth, invasiveness and metastasis. In this regard, the Eph/ephrin system provides the foundation for potentially exciting new targets for anticancer therapies for Eph‐expressing tumours. The purpose of this review is to outline current advances in the role of Eph receptors and ephrin ligands in cancer, and to discuss novel therapeutic approaches of anticancer therapies.  相似文献   

6.
Eph receptors and ephrins in neural development   总被引:9,自引:0,他引:9  
Ephrins, ligands for the Eph family of receptor tyrosine kinases, are pivotal players in many developmental phenomena in both the central and peripheral nervous systems. Ephrins appear to act typically, but not exclusively, as repellents throughout development to influence axon pathfinding and topographic mapping, as well as restricting cell migration and intermingling. Recent findings are beginning to characterize the function and signaling of ephrins, as well as major roles for them in other tissues.  相似文献   

7.
Cell-cell signaling via Eph receptors and ephrins   总被引:3,自引:0,他引:3  
Eph receptors are the largest subfamily of receptor tyrosine kinases regulating cell shape, movements, and attachment. The interactions of the Ephs with their ephrin ligands are restricted to the sites of cell-cell contact since both molecules are membrane attached. This review summarizes recent advances in our understanding of the molecular mechanisms underlining the diverse functions of the molecules during development and in the adult organism. The unique properties of this signaling system that are of highest interest and have been the focus of intense investigations are as follows: (i) the signal is simultaneously transduced in both ligand-expressing cells and receptor-expressing cells, (ii) signaling via the same molecules can generate opposing cellular reactions depending on the context, and (iii) the Ephs and the ephrins are divided into two subclasses with promiscuous intrasubclass interactions, but rarely observed intersubclass interactions.  相似文献   

8.
Control of cell behaviour by signalling through Eph receptors and ephrins   总被引:5,自引:0,他引:5  
Eph receptor tyrosine kinases and ephrins mediate contact-dependent cell interactions that regulate the repulsion and adhesion mechanisms involved in the guidance and assembly of cells. Recent work has revealed a role of overlapping Eph receptor and ephrin expression in modulating neuronal growth cone repulsion, and has shown that bidirectional activation restricts intermingling and communication between cell populations. In addition, progress has been made in understanding how Eph receptors and ephrins control cell adhesion.  相似文献   

9.
10.
Wu XW  Li M 《生理科学进展》2005,36(3):259-261
Eph受体酪氨酸激酶及其配体ephrin广泛参与神经系统的发育,如轴突导向、细胞迁移、体节形成和血管生成。最近研究显示的Ephephrin在突触的定位提示其与突触可塑性有关。Ephephrin对成年神经系统的可塑性、学习和记忆,以及神经损伤后的再生可能具有重要的调节作用。  相似文献   

11.
The ephrins and Eph receptors in angiogenesis.   总被引:26,自引:0,他引:26  
Eph receptors are a unique family of receptor tyrosine kinases that play critical roles in embryonic patterning, neuronal targeting, vascular development and adult neovascularization. Engagement of Eph receptors by ephrin ligands mediates critical steps of angiogenesis, including juxtacrine cell-cell contacts, cell adhesion to extracellular matrix, and cell migration. Recent evidence from in vitro angiogenesis assays and analysis of mice deficient for one or more members of the Eph family establishes the role of Eph signaling in sprouting angiogenesis and blood vessel remodeling during vascular development. Furthermore, elevated expression of Eph receptors and ephrin ligands is associated with tumors and associated tumor vasculature, suggesting that Eph receptors and their ephrin ligands also play critical roles in tumor angiogenesis and tumor growth. This review will focus on the relevance of Eph receptor signaling in embryonic and adult neovascularization, and possible contributions to tumor growth and metastasis.  相似文献   

12.
Eph receptors and ephrins: effectors of morphogenesis   总被引:19,自引:0,他引:19  
Eph receptor tyrosine kinases and their ligands, the ephrins, appear to lie functionally at the interface between pattern formation and morphogenesis. We review the role of Eph and ephrin signalling in the formation of segmented structures, in the control of axon guidance and cell migration and in the development of the vasculature. We address the question of how the specificity of response is achieved and discuss the specificity of ephrin-Eph interactions and the significance of structural domains in Eph receptors.  相似文献   

13.
Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have key roles in patterning and morphogenesis. Interactions between these molecules are promiscuous, but largely fall into two groups: EphA receptors bind to glycosylphosphatidyl inositol-anchored ephrin-A ligands, and EphB receptors bind to transmembrane ephrin-B proteins. Ephrin-B proteins transduce signals, such that bidirectional signalling can occur upon interaction with the Eph receptor. In many tissues, there are complementary and overlapping expression domains of interacting Eph receptors and ephrins. An important role of Eph receptors and ephrins is to mediate cell contact-dependent repulsion, and this has been implicated in the pathfinding of axons and neural crest cells, and the restriction of cell intermingling between hindbrain segments. Studies in an in vitro system show that bidirectional activation is required to prevent intermingling between cell populations, whereas unidirectional activation can restrict cell communication via gap junctions. Recent work indicates that Eph receptors can also upregulate cell adhesion, but the biochemical basis of repulsion versus adhesion responses is unclear. Eph receptors and ephrins have thus emerged as key regulators that, in parallel with cell adhesion molecules, underlie the establishment and maintenance of patterns of cellular organization.  相似文献   

14.
Eph–ephrin interactions control the signal transduction between cells and play an important role in carcinogenesis and other diseases. The interactions between Eph receptors and ephrins of the same subclass are promiscuous; there are cross-interactions between some subclasses, but not all. To understand how Eph–ephrin interactions can be both promiscuous and specific, we investigated sixteen energy landscapes of four Eph receptors (A2, A4, B2, and B4) interacting with four ephrin ligands (A1, A2, A5, and B2). We generated conformational ensembles and recognition energy landscapes starting from separated Eph and ephrin molecules and proceeding up to the formation of Eph–ephrin complexes. Analysis of the Eph–ephrin recognition trajectories and the co-evolution entropy of 400 ligand binding domains of Eph receptor and 241 ephrin ligands identified conserved residues during the recognition process. Our study correctly predicted the promiscuity and specificity of the interactions and provided insights into their recognition. The dynamic conformational changes during Eph–ephrin recognition can be described by progressive conformational selection and population shift events, with two dynamic salt bridges between EphB4 and ephrin-B2 contributing to the specific recognition. EphA3 cancer-related mutations lowered the binding energies. The specificity is not only controlled by the final stage of the interaction across the protein–protein interface, but also has large contributions from binding kinetics with the help of dynamic intermediates along the pathway from the separated Eph and ephrin to the Eph–ephrin complex.  相似文献   

15.
Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.  相似文献   

16.
Ichthyophis kohtaoensis, a member of the limbless Gymnophiona, has a specialized subterranean burrowing mode of life and a predominantly olfactory-guided orientation. The only visually guided behavior seems to be negative phototaxis. As these animals possess extremely small eyes (only 540 μm in diameter in adults), functional investigations of single retinal cells by electrophysiological methods have so far failed. Therefore, the content and distribution of retinal transmitters have been investigated as indications for a functioning sense organ in an animal that is supposed to be blind. In this study, the organization and development of the dopaminergic system have been examined in the retinae of embryonic, larval, and adult I. kohtaoensis, by using an antiserum against tyrosine hydroxylase, the rate-limiting enzyme in the catecholamine synthetic pathway, and an antiserum against dopamine itself. Labeled somata are situated in the inner nuclear layer and in the ganglion cell layer. Dopamine-positive fibers form a dense diffuse plexus, that covers the whole inner plexiform layer, whereas tyrosine hydroxylase-immunoreactive processes show a tendency to arborize in a stratified manner. Tyrosine-hydroxylase-immunolabeled fibers can occasionally be observed in the optic nerve head of larval stages. During ontogenesis and larval development, the distribution of transmitter-expressing cells changes and their number decreases, but no general degeneration of the visual system is detectable. Adult Ichthyophis still have retinal transmitters, indicating that the eyes, although obviously playing a minor role in a subterranean ecological niche, retain all the elements of functioning sense organs. Received: 20 November 1996 / Accepted: 23 February 1997  相似文献   

17.
During vertebrate development, morphologically and functionally very different tissue types and organ systems need to be generated and organised in close coordination with each other. Blood vessels, which become critically required during early embryogenesis and remain indispensable throughout life, need to integrate into a great diversity of tissue types and adapt to both local and systemic requirements of the organism. Far from being randomly placed and uniformly shaped tubes, blood vessels form, with some degree of flexibility, a highly organised and precisely arranged network. Their differentiation, ultrastructure and physiology are well adapted to the requirements and functions of the surrounding tissues. How coordinated development and differentiation are achieved at a molecular level remains to be characterised. This review highlights the large family of Eph receptor tyrosine kinases and their ligands, called ephrins, which, because of their versatile functions in many cell and tissue types and their molecular complexity, might well provide one example of a control system integrating blood vessel and tissue morphogenesis.  相似文献   

18.
Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “niches”, to impact stem cell fate decision. The niche factors include the regulatory factors such as oxygen, extracellular matrix (synthetic and decellularized), paracrine/autocrine signaling and physical forces (i.e., mechanical force, electrical force and flow shear). The use of novel bioreactors with precise control and recapitulation of niche factors through modulating reactor operation parameters can enable efficient stem cell expansion and differentiation. Recently, the development of microfluidic devices and microbioreactors also provides powerful tools to manipulate the stem cell microenvironment by adjusting flow rate and cytokine gradients. In general, bioreactor engineering can be used to better modulate stem cell niches critical for stem cell expansion, differentiation and applications as novel cell-based biomedicines. This paper reviews important factors that can be more precisely controlled in bioreactors and their effects on stem cell engineering.  相似文献   

19.
Niches regulate lineage-specific stem cell self-renewal versus differentiation in vivo and are composed of supportive cells and extracellular matrix components arranged in a three-dimensional topography of controlled stiffness in the presence of oxygen and growth factor gradients. Mimicking stem cell niches in a defined manner will facilitate production of the large numbers of stem cells needed to realize the promise of regenerative medicine and gene therapy. Progress has been made in mimicking components of the niche. Immobilizing cell-associated Notch ligands increased the self-renewal of hematopoietic (blood) stem cells. Culture on a fibrous scaffold that mimics basement membrane texture increased the expansion of hematopoietic and embryonic stem cells. Finally, researchers have created intricate patterns of cell-binding domains and complex oxygen gradients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号