首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Endocrine practice》2020,26(6):627-633
Objective: To evaluate the safety and efficacy of GlucoStabilizer software intravenous insulin (IV) dosing in comparison to American Diabetes Association protocol-directed provider-guided insulin dose adjustment (PGIA).Methods: GlucoStabilizer calculates the dose of IV insulin required to reach a prescribed target glucose range. GlucoStabilizer has not been fully studied in DKA. This retrospective study compared outcomes in patients with DKA before and after the implementation of GlucoStabilizer. Insulin doses were administered based on GlucoStabilizer calculations or PGIA. The analysis evaluated before-after changes in the amount of insulin used, time to target, hypoglycemia or hypokalemia events, and the time to DKA resolution.Results: We studied 77 patients with insulin doses calculated by GlucoStabilizer and 69 patients with PGIA dosing. GlucoStabilizer was superior to PGIA. Patients treated with GlucoStabilizer-calculated doses did not experience hypoglycemia (N = 0 versus N = 10; P<.001). The 10 unique PGIA patients had a total of 18 episodes with 17 between 55 to 69 mg/dL; 1 <54 mg/dL, and no episodes <40 mg/dL. The GlucoStabilizer group required less insulin to reach DKA resolution (59.2 versus 101.2 units; P<.001). Time to glycemic target and DKA resolution were similar (6.7 versus 4.6 hours; P = .132) and (9.8 versus 9.9 hours; P = .803), respectively. No difference in the incidence of hypokalemia was seen (N = 9 versus N = 11; P = .48).Conclusion: This study demonstrates the Gluco Stabilizer settings that can be successfully used in the management of DKA with the avoidance of hypoglycemia. Patients treated with GlucoStabilizer-calculated doses experienced no hypoglycemia and required less insulin as compared to those managed with PGIA.Abbreviations: ADA = American Diabetes Association; DKA = diabetic ketoacidosis; ED = emergency department; eGMS = electronic glycemic management systems; ICU = intensive care unit; IV = intravenous; PGIA = protocol-directed provider-guided insulin dose adjustment  相似文献   

2.
《Endocrine practice》2007,13(3):225-231
ObjectiveTo determine whether once-daily insulin glargine could provide better glycemic control after an abdominal surgical procedure than the traditional use of sliding scale regular insulin (SSRI).MethodsBecause 20% to 30% of patients undergoing gastric bypass have a history of overt diabetes and another 5% to 10% are estimated to have impaired glucose tolerance, we chose to study these patients. We treated 81 patients with postoperative blood glucose levels of more than 144 mg/dL after a Roux-en-Y gastric bypass surgical procedure. They were randomized to receive either SSRI or insulin glargine either directly or after initial intravenous insulin infusion in the intensive care unit (ICU).ResultsOverall, the mean blood glucose level after SSRI therapy was 154 ± 33 mg/dL, and the mean blood glucose value after insulin glargine treatment was 134 ± 30 mg/dL (P < 0.01). The mean blood glucose level for patients first treated with intravenous insulin infusion in the ICU was 125 mg/dL, in comparison with 145 mg/dL in the non-ICU patients whose treatment began directly with 0.3 U/kg of insulin glargine. Of 926 blood glucose measurements, only 3 were less than 60 mg/dL.ConclusionIn this study, control of postoperative hyperglycemia was significantly better with use of insulin glargine in comparison with SSRI therapy, and hypo-glycemia was very infrequent. (Endocr Pract. 2007;13: 225-231)  相似文献   

3.
《Endocrine practice》2015,21(7):794-806
Objective: Recent guidelines recommend a physiologic approach to non–intensive care unit (ICU) inpatient glucose management utilizing basal-bolus with correctional (BBC) insulin over traditional sliding-scale insulin monotherapy. Unfortunately, few studies exist using a BBC approach restricted to human insulins (regular and neutral protamine Hagedorn [NPH]). This study evaluated changes in provider prescribing patterns, effects on blood glucose, and safety with implementation of hospital order sets for BBC using human insulins.Methods: Order sets were developed for non-ICU inpatients, consisting of basal, prandial, and correctional insulin using NPH and regular human insulins. Evaluation compared a 4-month period before (admissions, n = 274) with a 4-month period after order set availability (n = 302). Primary outcome was change in insulin prescribing patterns. Secondary outcomes included use of nonpreferred diabetes treatments, hemoglobin A1c testing, mean daily blood glucose, and incidence of hypoglycemia.Results: Use of BBC insulin regimen increased from 10.6 to 27.5% after order set implementation (P<.001). Use of oral antihyperglycemic agents decreased from 24.1 to 14.9% after implementation (P = .006). Hemoglobin A1c testing rose from 50.0 to 62.3% after (P = .003). Mean daily blood glucose improved, with an estimated mean difference of 14.4 mg/dL (95% confidence interval, 2.2 to 26.5 mg/dL) over hospital days 3 through 9 (P = .02). There was no significant change in the incidence of moderate or severe hypoglycemia.Conclusion: Implementation of hospital-wide human insulin order sets led to improvements in prescribing practices and blood glucose control, without increasing the incidence of hypoglycemia. These order sets may be useful for facilities limited by formulary and cost considerations to the use of older human insulins.Abbreviations: BBC = basal-bolus with correctional insulin ICU = intensive care unit NPH = neutral protamine Hagedorn NPO = nil per os  相似文献   

4.
《Endocrine practice》2015,21(5):501-507
Objective: To describe the temporal distribution of hypoglycemia and its rate of recurrence during hospitalization to aid in the development of strategies to prevent hypoglycemia in hospitalized patients.Methods: Retrospective review of hypoglycemia (blood glucose <50 mg/dL) audit data in adult hospitalized patients at 2 academic hospitals. Demographics, timing, and blood glucose values were recorded. Antihyperglycemic medications, number of recurrent events, and change in basal insulin dose following the hypoglycemic event were also extracted.Results: A total of 274 index occurrences of hypoglycemia were analyzed. The mean age of the patients was 53.8 years, with roughly equal gender distributions. Twenty-eight percent of the events occurred in the absence of antihyperglycemic therapy. The incidence of hypoglycemia peaked between midnight and 6 AM. There were 36 instances of recurrent hypoglycemia associated with antihyperglycemic therapy, with 78% (n = 28) cases involving basal insulin. Patients on basal insulin who developed hypoglycemia did not have their dose changed prior to the time of the next administration in 75% of the cases.Conclusion: Hypoglycemia in hospitalized patients may occur with greater frequency overnight. Although cumbersome, routine nocturnal glycemic testing should be considered. Education regarding insulin management in the hospital and improved communication between night and day staff may aid in decreasing subsequent hypoglycemic events.Abbreviations: BG = blood glucose EHR = electronic health record ICU = intensive care unit IV = intravenous  相似文献   

5.
《Endocrine practice》2015,21(6):613-620
Objective: To understand how patients use continuous glucose monitoring (CGM) data in their diabetes management.Methods: We surveyed patients who regularly used CGM (>6 days per week), using 70 questions, many scenario-based. The survey had 6 sections: patient characteristics, general CGM use, hypoglycemia prevention and management, hyperglycemia prevention and management, insulin dosing adjustments (both for incidental hyperglycemia not at meals and at mealtimes), and real-time use versus retrospective analysis.Results: The survey was completed by 222 patients with type 1 diabetes. In response to a glucose of 220 mg/dL, the average correction dose adjustment based on rate of change arrows varied dramatically. Specifically, when the CGM device showed 2 arrows up (glucose increasing >3 mg/dL/minute), respondents stated they would increase their correction bolus, on average, by 140% (range, 0 to 600%). Conversely, 2 arrows down (glucose decreasing >3 mg/dL/minute) caused respondents to reduce their dose by 42%, with 24% omitting their dose entirely. Furthermore, 59% of respondents stated they would delay a meal in response to rapidly rising glucose, whereas 60% would wait until after a meal to bolus in response to falling glucose levels. With a glucose value of 120 mg/dL and a falling glucose trend, 70% of respondents would prophylactically consume carbohydrates to avoid hypoglycemia.Conclusion: CGM users utilize CGM data to alter multiple aspects of their diabetes care, including insulin dose timing, dose adjustments, and in hypoglycemia prevention. The insulin adjustments are much larger than common recommendations. Additional studies are needed to determine appropriate insulin adjustments based on glucose trend data.Abbreviations: A1c = hemoglobin A1c CGM = continuous glucose monitoring ROC = rate of change SMBG = self-monitored blood glucose  相似文献   

6.
ObjectiveTo report our preliminary experience with the revised, more conservative Yale insulin infusion protocol (IIP) that targets blood glucose concentrations of 120 to 160 mg/dL.MethodsWe prospectively tracked clinical responses to the new IIP in our medical intensive care unit (ICU) by recording data on the first 115 consecutive insulin infusions that were initiated. All blood glucose values; insulin doses; nutritional support including intravenous dextrose infusions; caloric values for enteral and parenteral nutrition; and use of vasopressors, corticosteroids, and hemodialysis or continuous venovenous hemodialysis were collected from the hospital record.ResultsThe IIP was used 115 times in 90 patients (mean age, 62 [± 14 years]; 51% male; 35% ethnic minorities; 66.1% with history of diabetes). The mean admission Acute Physiology and Chronic Health Evaluation II score was 24.4 (± 7.5). The median duration of insulin infusion was 59 hours. The mean baseline blood glucose concentration was 306.1 (± 89.8) mg/dL, with the blood glucose target achieved after a median of 7 hours. Once the target was reached, the mean IIP blood glucose concentration was 155.9 (± 22.9) mg/dL (median, 150 mg/dL). The median insulin infusion rate required to reach and maintain the target range was 3.5 units/h. Hypoglycemia was rare, with 0.3% of blood glucose values recorded being less than 70 mg/dL and only 0.02% being less than 40 mg/dL. In all cases, hypoglycemia was rapidly corrected using intravenous dextrose with no evident untoward outcomes.ConclusionsThe updated Yale IIP provides effective and safe targeted blood glucose control in critically ill patients, in compliance with recent national guidelines. It can be easily implemented by hospitals now using the original Yale IIP. (Endocr Pract. 2012;18:363-370)  相似文献   

7.
《Insulin》2007,2(4):157-165
Background: Despite the availability of advanced insulin delivery systems, blood glucose-monitoring equipment, and insulin analogue formulations, hypoglycemia remains a significant concern in the treatment of children and adolescents with type 1 diabetes mellitus (DM). Furthermore, patients who manage their blood glucose levels most effectively may also be the ones at greatest risk for hypoglycemia.Objective: The aim of this article was to review current issues surrounding the pathophysiology and frequency of hypoglycemia in children and adolescents with type 1 DM.Methods: Relevant articles for this review were identified through a search of MEDLINE (1992–2007; English-language articles only). The search terms used were children, adolescents, hypoglycemia, diabetes, insulin, and continuous subcutaneous insulin infusion.Results: The threat of severe hypoglycemia remains a major obstacle to the effective treatment of type 1 DM. Basalbolus therapy, using continuous subcutaneous insulin infusion or multiple daily injections, is the most effective and flexible method available for maintaining good glycemic control in children as well as in adults. Insulin analogues can be used effectively in these regimens and may be helpful toward addressing risks for hypoglycemia. Patient education should also be given a high priority in addressing the risk of hypoglycemia in children and adolescents with type 1 DM. The development of continuous glucose-monitoring systems offers the potential for an even brighter future for this group of patients.Conclusions: Recent advances in DM technology reduce but do not eliminate the risk of hypoglycemia in youth with type 1 DM. These observations underscore the need for a closed-loop insulin delivery system in which the rate of insulin infusion is regulated by real-time changes in glucose concentrations. (Insulin. 2007;2:157–165)Key words: type 1 diabetes mellitus; hypoglycemia; children; adolescents; insulin analogue; continuous subcutaneous insulin infusion; multiple daily injections; basal-bolus therapy.Accepted for publication 09052007  相似文献   

8.
《Endocrine practice》2009,15(3):229-233
ObjectiveTo evaluate the effect of near-normal glucose control before initiation of pramlintide therapy and square-wave meal bolus on self-reported hypoglycemia and the percentage change in dosing parameters after attaining the maximum pramlintide dosage.MethodsIn this prospective study, insulin pump–treated patients with type 1 diabetes had insulin dosages optimally titrated on the basis of daily continuous glucose monitoring (CGM). Pramlintide therapy was initiated, and the dosage was increased 15 mcg/meal per week. Insulin dosage was adjusted during 30-minute visits after review of self-monitored blood glucose records, adverse effects, and hypoglycemia diary. Within 2 weeks of achieving a pramlintide dosage of 60 mcg/meal, the second CGM–guided insulin dosage adjustment was done. The primary end point was the percentage change in total basal insulin dosage (TBD) from baseline. The secondary end points were the percentage change in the insulin to carbohydrate ratio (ICR) and the assessment of symptoms of nausea and hypoglycemia during the pramlintide dosing escalation.ResultsNine patients were enrolled. The difference between before and during CGM–guided insulin dosing was a mean (± standard deviation) TBD change of -11.2 ± 13.2% (P = 0.023) and mean ICR change of 7.8 ± 13.4% (P = 0.053). Pramlintide was well tolerated and resulted in decrease in weight and hemoglobin A1c values. Hypoglycemia occurred in 6 patients during the study; the assistance of another person was not required in any of these cases. No hypoglycemia was reported in the first week of starting pramlintide. Mild to moderate nausea was reported in 6 patients during the titration phase.ConclusionsPatients with near-normal glucose control who use a square-wave bolus may not need initial bolus dosage reduction. With weight loss, small adjustments in both TBD and ICR may be required. Greater incidence of hypoglycemia seen in previous studies may in part be due to mismatched insulin dosing. (Endocr Pract. 2009;15:229-233)  相似文献   

9.
Diabetes mellitus is a major independent risk factor for increased morbidity and mortality in the hospitalized patient, and elevated blood glucose concentrations, even in non-diabetic patients, predicts poor outcomes. The 2008 consensus statement by the American Association of Clinical Endocrinologists (AACE) and the American Diabetes Association (ADA) states that "hyperglycemia in hospitalized patients, irrespective of its cause, is unequivocally associated with adverse outcomes." It is important to recognize that hyperglycemia occurs in patients with known or undiagnosed diabetes as well as during acute illness in those with previously normal glucose tolerance. The Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm Regulation (NICE-SUGAR) study involved over six thousand adult intensive care unit (ICU) patients who were randomized to intensive glucose control or conventional glucose control. Surprisingly, this trial found that intensive glucose control increased the risk of mortality by 14% (odds ratio, 1.14; p = 0.02). In addition, there was an increased prevalence of severe hypoglycemia in the intensive control group compared with the conventional control group (6.8% vs. 0.5%, respectively; p < 0.001). From this pivotal trial and two others, Wyoming Medical Center (WMC) realized the importance of controlling hyperglycemia in the hospitalized patient while avoiding the negative impact of resultant hypoglycemia. Despite multiple revisions of an IV insulin paper protocol, analysis of data from usage of the paper protocol at WMC shows that in terms of achieving normoglycemia while minimizing hypoglycemia, results were suboptimal. Therefore, through a systematical implementation plan, monitoring of patient blood glucose levels was switched from using a paper IV insulin protocol to a computerized glucose management system. By comparing blood glucose levels using the paper protocol to that of the computerized system, it was determined, that overall, the computerized glucose management system resulted in more rapid and tighter glucose control than the traditional paper protocol. Specifically, a substantial increase in the time spent within the target blood glucose concentration range, as well as a decrease in the prevalence of severe hypoglycemia (BG < 40 mg/dL), clinical hypoglycemia (BG < 70 mg/dL), and hyperglycemia (BG > 180 mg/dL), was witnessed in the first five months after implementation of the computerized glucose management system. The computerized system achieved target concentrations in greater than 75% of all readings while minimizing the risk of hypoglycemia. The prevalence of hypoglycemia (BG < 70 mg/dL) with the use of the computer glucose management system was well under 1%.  相似文献   

10.
《Endocrine practice》2015,21(12):1333-1343
Objective: To evaluate the impact of different subcutaneous basal insulin regimens on glycemic variability (GV) and hospital complications in non-intensive care unit (ICU) patients with type 2 diabetes (T2D).Methods: This study is a post hoc analysis of 279 general medicine and surgery patients treated with either a “Basal Bolus” insulin regimen using glargine once daily and glulisine before meals or a “Basal Plus” regimen using glargine once daily plus correction doses of glulisine before meals for glucose >140 mg/dL. GV was calculated as mean delta (Δ) daily glucose, mean SD, and mean amplitude of glycemic excursions (MAGE).Results: Treatment with Basal Bolus and Basal Plus regimens resulted in similar mean daily glucose, hypoglycemia, length of stay (LOS), and hospital complications (all P>.05). There were no differences in GV between treatment groups by Δ change (72.5 ± 36 vs. 69.3 ± 34 mg/dL), SD (38.5 ± 18 vs. 37.1 ± 16 mg/dL) and MAGE (67.5 ± 34 vs. 66.1 ± 39 mg/dL) (all P>.05). Surgery patients treated with Basal Bolus had higher GV compared to those treated with Basal Plus (Δ daily glucose and SD: P = .02, MAGE: P = .009), but no difference in GV was found between treatment groups for the general medicine patients (P>.05). Patients with hypoglycemia events had higher GV compared to subjects without hypoglycemia (P<.05), but no association was found between GV and hospital complications (P>.05).Conclusion: Treating hospitalized, non-ICU, diabetic patients with Basal Plus insulin regimen resulted in similar glucose control and GV compared to the standard Basal Bolus insulin regimen. Higher GV was not associated with hospital complications.Abbreviations:BG = blood glucoseCV= coefficient of variationGV= glycemic variabilityICU = intensive care unitLOS = length of stayMAGE = mean amplitude of glycemic excursionsSSI = sliding scale insulinT2D = type 2 diabetesTDD =total daily dose  相似文献   

11.
《Endocrine practice》2014,20(6):527-535
ObjectivePerioperative glycemic management is particularly challenging in heart transplant (HT) patients who are on high-dose steroids and subject to surgical stress. The objective of the study was to examine the efficacy and safety of perioperative insulin administration in HT patients with and without diabetes.MethodsMedical records of 71 HT patients from June 1, 2005 to July 31, 2009 whose hyperglycemia was managed by our Glucose Management Service (GMS) were analyzed for up to 1 year after HT. Their daily blood glucose (BG) averages on intravenous (IV) insulin drips and subcutaneous (SQ) insulin, hypoglycemia rates, reasons for hypoglycemia, and deviations from insulin protocols were analyzed.ResultsDaily BG averages between diabetic (DM) and nondiabetic (nonDM) patients were not significantly different while on the drip but were significantly different for first 5 days on SQ (P < .05). The daily insulin glargine doses were similar. No patients developed severe hypoglycemia (BG ≤ 40 mg/dL) while on drip, and only 2.8% experienced hypoglycemia on SQ. Among 40 episodes of moderate hypoglycemia while on drip, 15 had nurse deviations from protocol prior to the episode. Posttransition day fasting glucose was at goal (mean 124.7 ± 35.4 mg/dL); however 39.4% (28/71) of patients received a transition insulin glargine dose that was different from the amount indicated by protocol. The likelihood of developing moderate hypoglycemia on SQ was associated with the glargine dose used at the time of transition (odds ratio [OR] 1.03, P = .034).ConclusionInpatient insulin protocols implemented by a GMS are successful in obtaining glycemic control with minimal side effects in patients with and without diabetes, even when they are on a high-dose steroid regimen. (Endocr Pract. 2014;20:527-535)  相似文献   

12.
《Endocrine practice》2018,24(11):973-981
Objective: To evaluate the efficacy and safety of insulin glargine 300 U/mL (Gla-300) and insulin glargine 100 U/mL (Gla-100) in patients with type 2 diabetes (T2D) who reached prebreakfast self-monitored plasma glucose (SMPG) levels <100 and <130 mg/dL.Methods: This was a post hoc analysis of insulin-naïve (EDITION 3, NCT01676220) and experienced (EDITION 2, NCT01499095) patients with uncontrolled T2D, randomized to 6 months of Gla-300 versus Gla-100 treatment. Endpoints included glycated hemoglobin A1c change, hypoglycemia incidence, and event rates. Separate comparisons were done for patients achieving prebreak-fast fasting glucose of <100 versus ≥100 mg/dL and <130 versus ≥130 mg/dL.Results: Efficacy did not differ significantly between treatments in either study. Overall, basal insulin doses were ~10% higher with Gla-300 versus Gla-100. EDITION 2: overall and documented (≤70 mg/dL) hypoglycemia rates were significantly lower with Gla-300 versus Gla-100 in all SMPG groups except <100 mg/dL; nocturnal hypoglycemia rates were significantly lower with Gla-300 in all SMPG groups. EDITION 3: overall hypoglycemia rates were significantly lower with Gla-300 in patients with SMPG ≥100 mg/dL and those with SMPG <130 mg/dL; documented hypoglycemia rates were significantly lower in all SMPG groups except ≥130 mg/dL. Nocturnal and nocturnal documented hypoglycemia rates did not differ by treatment group. Hypoglycemia incidence did not differ by treatment in any SMPG group.Conclusion: In patients with T2D initiating basal insulin or previously treated for ≥6 months with basal insulin, Gla-300 provides similar efficacy to Gla-100 and reduces risk of hypoglycemia for many patients, despite a ~10% higher insulin dose.Abbreviations: A1C = glycated hemoglobin A1c; ADA = American Diabetes Association; Gla-100 = insulin glargine 100 U/mL; Gla-300 = insulin glargine 100 U/mL; OAD = oral antidiabetes drug; SMPG = self-monitored plasma glucose; T2D = type 2 diabetes  相似文献   

13.
14.
《Endocrine practice》2014,20(5):452-460
ObjectiveTo describe the state of glycemic control in noncritically ill diabetic patients admitted to the Puerto Rico University Hospital and adherence to current standard of care guidelines for the treatment of diabetes.MethodsThis was a retrospective study of patients admitted to a general medicine ward with diabetes mellitus as a secondary diagnosis. Clinical data for the first 5 days and the last 24 hours of hospitalization were analyzed.ResultsA total of 147 noncritically ill diabetic patients were evaluated. The rates of hyperglycemia (blood glucose ≥ 180 mg/dL) and hypoglycemia (blood glucose < 70 mg/dL) were 56.7 and 2.8%, respectively. Nearly 60% of patients were hyperglycemic during the first 24 hours of hospitalization (mean random blood glucose, 226.5 mg/dL), and 54.2% were hyperglycemic during the last 24 hours of hospitalization (mean random blood glucose, 196.51 mg/dL). The mean random last glucose value before discharge was 189.6 mg/dL. Most patients were treated with subcutaneous insulin, with basal insulin alone (60%) used as the most common regimen. The proportion of patients classified as uncontrolled receiving basal-bolus therapy increased from 54.3% on day 1 to 60% on day 5, with 40% continuing to receive only basal insulin. Most of the uncontrolled patients had their insulin dose increased (70.1%); however, a substantial proportion had no change (23.7%) or even a decrease (6.2%) in their insulin dose.ConclusionThe management of hospitalized diabetic patients is suboptimal, probably due to clinical inertia, manifested by absence of appropriate modification of insulin regimen and intensification of dose in uncontrolled diabetic patients. A comprehensive educational diabetes management program, along with standardized insulin orders, should be implemented to improve the care of these patients. (Endocr Pract. 2014;20:452-460)  相似文献   

15.
《Endocrine practice》2015,21(11):1269-1276
Objective: The number of people with diabetes using continuous subcutaneous insulin infusions (CSII) with an insulin pump has risen dramatically, creating new challenges when these patients are admitted to the hospital for surgical or other procedures. There is limited literature guiding CSII use during surgical procedures.Methods: The study was carried out in a large, urban, tertiary care hospital. We enrolled 49 patients using insulin pump therapy presenting for 57 elective surgeries. We developed a CSII peri-operative glycemic management protocol (PGMP) to standardize insulin pump management in patients admitted to a same-day surgery unit (SDSU). The purpose was evaluate the safety (% capillary blood glucose (CBG) <70 mg/dL and/or pump incidents) and efficacy (first postoperative CBG ≤200 mg/dL) of the CSII PGMP. We determine the contribution of admission CBG, type of anesthesia, surgery length, and peri-operative steroid use on postoperative glycemic control.Results: Overall, 63% of patients treated according to the CSII PGMP had a first postoperative CBG ≤200 mg/dL. There were no episodes of intra- or postoperative hypoglycemia. For patients treated with the CSII PGMP, the mean postoperative CBG was lower in patients with anticipated or actual surgical length ≤120 minutes (158.1 ± 53.9 vs. 216 ± 77.7 mg/dL, P<.01). No differences were observed with admission CBG, type of anesthesia, or steroid use.Conclusions: This study demonstrates that a CSII PGMP is both safe and effective for patients admitted for elective surgical procedures and provides an example of a standardized protocol for use in clinical practice.Abbreviations: A1C = glycated hemoglobin BG = blood glucose CBG = capillary blood glucose CSII = continuous subcutaneous insulin infusion DM = diabetes mellitus EMR = electronic medical record IV = intravenous PGMP = peri-operative glycemic management protocol SDS = same-day surgery SDSU = same-day surgery unit SQ = subcutaneous UC = usual care  相似文献   

16.
《Endocrine practice》2019,25(5):407-412
Objective: To determine the efficacy and safety of a diabetic ketoacidosis (DKA)-Power Plan (PP) for guiding intravenous (IV) insulin infusions prior to anion gap (AG) closure and administering subcutaneous (SC) insulin ≥1 hour before discontinuing IV insulin.Methods: Retrospective chart review of patients with DKA before (pre-PP) (n = 60) and following (post-PP) (n = 60) implementation of a DKA-PP. Groups were compared for percentage of patients for whom IV insulin therapy was continued until AG closure, the percentage of patients receiving SC insulin ≥1 hour before discontinuation of IV insulin, and percentage of patients with rebound DKA during the index hospitalization.Results: Admission plasma glucose (514 mg/dL vs. 500 mg/dL; P = .36) and venous pH (7.2 vs. 7.2; P = .57) were similar in pre- and post-PP groups. Inappropriate discontinuation of IV insulin occurred less frequently in post-PP patients (28% vs. 7%; P = .007), with a lower frequency of rebound DKA (40% vs. 8%; P = .001) following acute management. More post-PP patients received SC insulin ≥1 hour before discontinuation of IV insulin (65% vs. 78%; P = .05).Conclusion: Implementation of a DKA-PP was associated with appropriate discontinuation of IV insulin in more patients, more frequent administration of SC insulin ≥1 hour prior to discontinuation of IV insulin, and fewer episodes of rebound DKA.Abbreviations: ADA = American Diabetes Association; AG = anion gap; BG = blood glucose; DKA = diabetic ketoacidosis; DKA-PP = DKA-Power Plan; ICU = intensive care unit; IQR = interquartile range; IV = intravenous; IVF = IV fluid; LOS = length of stay; SC = subcutaneous  相似文献   

17.
《Endocrine practice》2008,14(2):185-192
ObjectiveTo describe a structured inpatient insulin management protocol and order set for glycemic control on a vascular surgery service.MethodsPatients admitted to the vascular surgery service with underlying diabetes were enrolled in a study of use of a preprinted basal-bolus insulin order set based on a total daily dose of 0.5 U/kg (0.25 U/kg of insulin glargine and 0.25 U/kg of insulin aspart divided into 3 equal mealtime doses). Outcomes included the mean glycemic control at each of 5 established time intervals, the percentage of blood glucose measurements within the target range of 70 to 180 mg/dL, the incidence of hypoglycemia, and the insulin dosages. Historical control patients with diabetes from the same hospital service were used for comparison.ResultsBoth the study group and the control group consisted of 26 patients. The number of finger-stick blood glucose measurements performed was 871 in the control group and 896 in the intervention group. The mean blood glucose level (± SD) for the intervention group was 149.4 ± 50.7 mg/dL, in comparison with 165.2 ± 64.4 mg/dL for the control group. The incidence of hypoglycemia decreased 50% in the intervention group—from 32 (4% of the finger-stick assessments in the control group) to 19 (2% of the finger-stick blood glucose measurements in the study group). The blood glucose target range of 70 to 180 mg/dL was achieved in 75% of the measurements in the study group versus 61% in the control group. The basal insulin dose was unchanged in 65% of the patients, and of the 9 patients requiring a change in the dose, 5 had the dose decreased by 10% and 4 had the dose increased by 10%.ConclusionThe use of a standardized basal-bolus weight-based insulin regimen was successful at achieving improved glycemic control as well as reducing the incidence of hypoglycemia in an inpatient population with diabetes. (Endocr Pract. 2008;14:185-192)  相似文献   

18.
《Endocrine practice》2020,26(7):722-728
Objective: DPP-4 inhibitors (DPP-4i) have been shown to be effective for the management of inpatient diabetes. We report pooled data from 3 prospective studies using DPP-4i in general medicine and surgery patients with type 2 diabetes (T2D).Methods: We combined data from 3 randomized studies comparing DPP-4i alone or in combination with basal insulin or a basal-bolus insulin regimen. Medicine (n = 266) and surgery (n = 319) patients admitted with a blood glucose (BG) between 140 and 400 mg/dL, treated with diet, oral agents, or low-dose insulin therapy were included. Patients received DPP-4i alone (n = 144), DPP-4i plus basal insulin (n = 158) or basal-bolus regimen (n = 283). All groups received correctional doses with rapid-acting insulin for BG >140 mg/dL. The primary endpoint was differences in mean daily BG between groups. Secondary endpoints included differences in hypoglycemia and hospital complications.Results: There were no differences in mean hospital daily BG among patients treated with DPP-4i alone (170 ± 37 mg/dL), DPP-4i plus basal (172 ± 42 mg/dL), or basalbolus (172 ± 43 mg/dL), P = .94; or in the percentage of BG readings within target of 70 to 180 mg/dL (63 ± 32%, 60 ± 31%, and 64 ± 28%, respectively; P = .42). There were no differences in length of stay or complications, but hypoglycemia was less common with DPP-4i alone (2%) compared to DPP-4i plus basal (9%) and basal-bolus (10%); P = .004.Conclusion: Treatment with DPP-4i alone or in combination with basal insulin is effective and results in a lower incidence of hypoglycemia compared to a basal-bolus insulin regimen in general medicine and surgery patients with T2D.Abbreviations: BG = blood glucose; BMI = body mass index; CI = confidence interval; DPP-4i = dipeptidyl peptidase-4 inhibitors; HbA1c = hemoglobin A1c; OR = odds ratio; T2D = type 2 diabetes  相似文献   

19.
《Endocrine practice》2018,24(12):1073-1085
Objective: The management of diabetic patients undergoing elective abdominal surgery continues to be unsystematic, despite evidence that standardized perioperative glycemic control is associated with fewer postoperative surgical complications. We examined the efficacy of a pre-operative diabetes optimization protocol implemented at a single institution in improving perioperative glycemic control with a target blood glucose of 80 to 180 mg/dL.Methods: Patients with established and newly diagnosed diabetes who underwent elective colorectal surgery were included. The control group comprised 103 patients from January 1, 2011, through December 31, 2013, before protocol implementation. The glycemic-optimized group included 96 patients following protocol implementation from January 1, 2014, through July 31, 2016. Data included demographic information, blood glucose levels, insulin doses, hypoglycemic events, and clinical outcomes (length of stay, re-admissions, complications, and mortality).Results: Patients enrolled in the glycemic optimization protocol had significantly lower glucose levels intra-operatively (145.0 mg/dL vs. 158.1 mg/dL; P = .03) and postoperatively (135.6 mg/dL vs. 145.2 mg/dL; P = .005). A higher proportion of patients enrolled in the protocol received insulin than patients in the control group (0.63 vs. 0.48; P = .01), but the insulin was administered less frequently (median [interquartile range] number of times, 6.0 [2.0 to 11.0] vs. 7.0 [5.0 to 11.0]; P = .04). Two episodes of symptomatic hypoglycemia occurred in the control group. There was no difference in clinical outcomes.Conclusion: Improved peri-operative glycemic control was observed following implementation of a standardized institutional protocol for managing diabetic patients undergoing elective colorectal surgery.Abbreviations: HbA1c = glycated hemoglobin A1c; IQR = interquartile range  相似文献   

20.
《Endocrine practice》2014,20(9):876-883
ObjectiveReport data on glucose control from 635 U.S. hospitals.MethodsPoint-of-care blood glucose (POC-BG) test data from January through December 2012 from 635 facilities were extracted. Glucose control was evaluated using patient-day–weighted mean POC-BG values. We calculated hypoglycemia and hyperglycemia rates, stratified by presence or absence of intensive care unit (ICU) admission, and we evaluated the relationship between glycemic control and hospital characteristics.ResultsIn total, 51,375,764 POC-BG measurements (non-ICU, 39,197,762; ICU, 12,178,002) from 2,612,966 patients (non-ICU, 2,415,209; ICU, 575,084) were analyzed. The mean POC-BG was 167 mg/dL for non-ICU patients and 170 mg/dL for ICU patients. The prevalence of hyperglycemia (defined as glucose value > 180 mg/dL) was 32.3 and 28.2% in non-ICU and ICU patients, respectively. The prevalence of hypoglycemia (defined as glucose value < 70 mg/dL) was 6.1 and 5.6% in non-ICU and ICU patients, respectively. In non-ICU and ICU settings, the patient-day–weighted mean glucose was highest in the smallest hospitals, in rural hospitals, and in hospitals located in the Northeast (all P < .01). For non-ICU patients, we observed a significant difference in the percentage of patient days with hypoglycemia by geographic region only (P < .001). In ICU patients, the prevalence of hypoglycemia varied significantly by hospital type (P < .03) and geographic region (P < .01).ConclusionIn this largest POC-BG data set analysis conducted to date, glycemic control varied according to hospital characteristics. Our findings remain consistent with previous reports. Among other variables, national benchmarking of inpatient glucose data will need to consider differences in hospital characteristics. (Endocr Pract. 2014;20:876-883)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号