首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Hybridizing species such as oaks may provide a model to study the role of selection in speciation with gene flow. Discrete species'' identities and different adaptations are maintained among closely related oak species despite recurrent gene flow. This is probably due to ecologically mediated selection at a few key genes or genomic regions. Neutrality tests can be applied to identify so-called outlier loci, which demonstrate locus-specific signatures of divergent selection and are candidate genes for further study.

Methods

Thirty-six genic microsatellite markers, some with putative functions in flowering time and drought tolerance, and eight non-genic microsatellite markers were screened in two population pairs (n = 160) of the interfertile species Quercus rubra and Q. ellipsoidalis, which are characterized by contrasting adaptations to drought. Putative outliers were then tested in additional population pairs from two different geographic regions (n = 159) to support further their potential role in adaptive divergence.

Key Results

A marker located in the coding sequence of a putative CONSTANS-like (COL) gene was repeatedly identified as under strong divergent selection across all three geographically disjunct population pairs. COL genes are involved in the photoperiodic control of growth and development and are implicated in the regulation of flowering time.

Conclusions

The location of the polymorphism in the Quercus COL gene and given the potential role of COL genes in adaptive divergence and reproductive isolation makes this a promising candidate speciation gene. Further investigation of the phenological characteristics of both species and flowering time pathway genes is suggested in order to elucidate the importance of phenology genes for the maintenance of species integrity. Next-generation sequencing in multiple population pairs in combination with high-density genetic linkage maps could reveal the genome-wide distribution of outlier genes and their potential role in reproductive isolation between these species.  相似文献   

2.
Studying host-based divergence naturally maintained by a balance between selection and gene flow can provide valuable insights into genetic underpinnings of host adaptation and ecological speciation in parasites. Selection-gene flow balance is often postulated in sympatric host races, but direct experimental evidence is scarce. In this study, we present such evidence obtained in host races of Aphidius ervi, an important hymenopteran agent of biological control of aphids in agriculture, using a novel fusion-fission method of gene flow perturbation. In our study, between-race genetic divergence was obliterated by means of advanced hybridisation, followed by a multi-generation exposure of the resulting genetically uniform hybrid swarm to a two-host environment. This fusion-fission procedure was implemented under two contrasting regimes of between-host gene flow in two replicated experiments involving different racial pairs. Host-based genetic fission in response to environmental bimodality occurred in both experiments in as little as six generations of divergent adaptation despite continuous gene flow. We demonstrate that fission recovery of host-based divergence evolved faster and hybridisation-induced linkage disequilibrium decayed slower under restricted (6.7%) compared with unrestricted gene flow, directly pointing at a balance between gene flow and divergent selection. We also show, in four separate tests, that random drift had no or little role in the observed genetic split. Rates and patterns of fission divergence differed between racial pairs. Comparative linkage analysis of these differences is currently under way to test for the role of genomic architecture of adaptation in ecology-driven divergent evolution.  相似文献   

3.
Via S  West J 《Molecular ecology》2008,17(19):4334-4345
Early in ecological speciation, the genomically localized effects of divergent selection cause heterogeneity among loci in divergence between incipient species. We call this pattern of genomic variability in divergence the 'genetic mosaic of speciation'. Previous studies have used F(ST) outliers as a way to identify divergently selected genomic regions, but the nature of the relationship between outlier loci and quantitative trait loci (QTL) involved in reproductive isolation has not yet been quantified. Here, we show that F(ST) outliers between a pair of incipient species are significantly clustered around QTL for traits that cause ecologically based reproductive isolation. Around these key QTL, extensive 'divergence hitchhiking' occurs because reduced inter-race mating and negative selection decrease the opportunity for recombination between chromosomes bearing different locally adapted QTL alleles. Divergence hitchhiking is likely to greatly increase the opportunity for speciation in populations that are sympatric, regardless of whether initial divergence was sympatric or allopatric. Early in ecological speciation, analyses of population structure, gene flow or phylogeography based on different random or arbitrarily chosen neutral markers should be expected to conflict--only markers in divergently selected genomic regions will reveal the evolutionary history of adaptive divergence and ecologically based reproductive isolation. Species retain mosaic genomes for a very long time, and gene exchange in hybrid zones can vary dramatically among loci. However, in hybridizing species, the genomic regions that affect ecologically based reproductive isolation are difficult to distinguish from regions that have diverged for other reasons.  相似文献   

4.
Ecological divergence in the face of gene flow has recently become implicated as a potentially important cause of speciation and adaptive radiation. Here, we develop a genomic approach to test for divergent selection in sympatric host races of the larch budmoth Zeiraphera diniana (Lepidoptera: Tortricidae). We analysed hundreds of amplified fragment length polymorphism markers in 92 individuals in sympatric and allopatric populations, and in two backcross broods used to map the markers to individual chromosomes. The results directly confirm the existence of natural hybridization and demonstrate strong heterogeneity between chromosomes in terms of molecular divergence between host races (the average level of divergence was FST = 0.216). However, genomic heterogeneity was not found when we analysed divergence between geographically separated populations of the same host race. We conclude that the variance of the level of sympatric divergence among chromosomes is the footprint of divergent selection acting on a few linkage groups, combined with appreciable gene flow that homogenizes between-race variation at the remaining linkage groups. These results, coupled with other recent multilocus analyses of sister species pairs, demonstrate that selection-driven sympatric phase of genetic divergence in the presence of gene flow is a likely feature of speciation.  相似文献   

5.
Analyses of genomewide polymorphism data have begun to shed light on speciation and adaptation. Genome scans to identify regions of the genome that are unusually different between populations or species, possibly due to divergent natural or sexual selection, are widespread in speciation genomics. Theoretical and empirical work suggests that such outlier regions may grow faster than linearly during speciation with gene flow due to a rapid transition between low and high reproductive isolation. We investigate whether this pattern could be attributed to neutral processes by simulating genomes under neutral evolution with varying amounts and timing of gene flow. Under both neutral evolution and divergent selection, simulations with little or no gene flow, or with a long allopatric period after its cessation, resulted in faster than linear growth of the proportion of the genome lying in outlier regions. Without selection, higher recent gene flow erased differentiation; with divergent selection, these same scenarios produced nonlinear growth to a plateau. Our results suggest that, given a history of gene flow, the growth of the divergent genome is informative about selection during divergence, but that in many scenarios, this pattern does not easily distinguish neutral and non‐neutral processes during speciation with gene flow.  相似文献   

6.
Ecological speciation   总被引:3,自引:0,他引:3  
Ecological processes are central to the formation of new species when barriers to gene flow (reproductive isolation) evolve between populations as a result of ecologically‐based divergent selection. Although laboratory and field studies provide evidence that ‘ecological speciation’ can occur, our understanding of the details of the process is incomplete. Here we review ecological speciation by considering its constituent components: an ecological source of divergent selection, a form of reproductive isolation, and a genetic mechanism linking the two. Sources of divergent selection include differences in environment or niche, certain forms of sexual selection, and the ecological interaction of populations. We explore the evidence for the contribution of each to ecological speciation. Forms of reproductive isolation are diverse and we discuss the likelihood that each may be involved in ecological speciation. Divergent selection on genes affecting ecological traits can be transmitted directly (via pleiotropy) or indirectly (via linkage disequilibrium) to genes causing reproductive isolation and we explore the consequences of both. Along with these components, we also discuss the geography and the genetic basis of ecological speciation. Throughout, we provide examples from nature, critically evaluate their quality, and highlight areas where more work is required.  相似文献   

7.
Adaptation to divergent ecological niches can result in speciation. Traits subject to disruptive selection that also contribute to non-random mating will facilitate speciation with gene flow. Such ‘magic’ or ‘multiple-effect’ traits may be widespread and important for generating biodiversity, but strong empirical evidence is still lacking. Although there is evidence that putative ecological traits are indeed involved in assortative mating, evidence that these same traits are under divergent selection is considerably weaker. Heliconius butterfly wing patterns are subject to positive frequency-dependent selection by predators, owing to aposematism and Müllerian mimicry, and divergent colour patterns are used by closely related species to recognize potential mates. The amenability of colour patterns to experimental manipulation, independent of other traits, presents an excellent opportunity to test their role during speciation. We conducted field experiments with artificial butterflies, designed to match natural butterflies with respect to avian vision. These were complemented with enclosure trials with live birds and real butterflies. Our experiments showed that hybrid colour-pattern phenotypes are attacked more frequently than parental forms. For the first time, we demonstrate disruptive ecological selection on a trait that also acts as a mating cue.  相似文献   

8.
Hybrid zones of ecologically divergent populations are ideal systems to study the interaction between natural selection and gene flow during the initial stages of speciation. Here, we perform an amplified fragment length polymorphism (AFLP) genome scan in parallel hybrid zones between divergent ecotypes of the marine snail Littorina saxatilis, which is considered a model case for the study of ecological speciation. Ridged‐Banded (RB) and Smooth‐Unbanded (SU) ecotypes are adapted to different shore levels and microhabitats, although they present a sympatric distribution at the mid‐shore where they meet and mate (partially assortatively). We used shell morphology, outlier and nonoutlier AFLP loci from RB, SU and hybrid specimens captured in sympatry to determine the level of phenotypic and genetic introgression. We found different levels of introgression at parallel hybrid zones and nonoutlier loci showed more gene flow with greater phenotypic introgression. These results were independent from the phylogeography of the studied populations, but not from the local ecological conditions. Genetic variation at outlier loci was highly correlated with phenotypic variation. In addition, we used the relationship between genetic and phenotypic variation to estimate the heritability of morphological traits and to identify potential Quantitative Trait Loci to be confirmed in future crosses. These results suggest that ecology (exogenous selection) plays an important role in this hybrid zone. Thus, ecologically based divergent natural selection is responsible, simultaneously, for both ecotype divergence and hybridization. On the other hand, genetic introgression occurs only at neutral loci (nonoutliers). In the future, genome‐wide studies and controlled crosses would give more valuable information about this process of speciation in the face of gene flow.  相似文献   

9.
Divergent selection between contrasting habitats can sometimes drive adaptive divergence and the evolution of reproductive isolation in the face of initially high gene flow. "Progress" along this ecological speciation pathway can range from minimal divergence to full speciation. We examine this variation for threespine stickleback fish that evolved independently across eight lake-stream habitat transitions. By quantifying stickleback diets, we show that lake-stream transitions usually coincide with limnetic-benthic ecotones. By measuring genetically based phenotypes, we show that these ecotones often generate adaptive divergence in foraging morphology. By analyzing neutral genetic markers (microsatellites), we show that adaptive divergence is often associated with the presence of two populations maintaining at least partial reproductive isolation in parapatry. Coalescent-based simulations further suggest that these populations have diverged with gene flow within a few thousand generations, although we cannot rule out the possibility of phases of allopatric divergence. Finally, we find striking variation among the eight lake-stream transitions in progress toward ecological speciation. This variation allows us to hypothesize that progress is generally promoted by strong divergent selection and limited dispersal across the habitat transitions. Our study thus makes a case for ecological speciation in a parapatric context, while also highlighting variation in the outcome.  相似文献   

10.
物种形成是基本的进化过程, 也是生物多样性形成的基础。自然选择可以导致新物种的产生。生态物种形成是指以生态为基础的歧化选择使不同群体分化产生生殖隔离的物种形成过程。本文首先回顾了生态物种形成的研究历史, 并详细介绍了生态物种形成的3个要素, 即歧化选择的来源、生殖隔离的形式以及关联歧化选择与生殖隔离的遗传机制。歧化选择的来源主要包括不同的环境或生态位、不同形式的性选择, 以及群体间的相互作用。生殖隔离的形式多种多样, 我们总结了合子前和合子后隔离的遗传学机制以及在生态物种形成中起到的作用。控制适应性性状的基因与导致生殖隔离的基因可以通过基因多效性或连锁不平衡相互关联起来。借助于第二代测序技术, 研究者可以对生态物种形成的遗传学与基因组学基础进行研究。此外, 本文还总结了生态物种形成领域最新的研究进展, 包括平行进化的全基因组基础, 以及基因流影响群体分化的理论基础。通过归纳比较由下至上和由上至下这两种不同的研究思路, 作者认为这两种思路的结合可以为生态物种形成基因的筛选提供更有力也更精确的方法。同时, 作者还提出生态物种形成的研究应该基于更好的表型描述以及更完整的基因组信息, 研究的物种也应该具有更广泛的代表性。  相似文献   

11.
Oceans are home to much of the world''s biodiversity, but we know little about the processes driving speciation in marine ecosystems with few geographical barriers to gene flow. Ecological speciation resulting from divergent natural selection between ecological niches can occur in the face of gene flow. Sister species in the young and ecologically diverse rockfish genus Sebastes coexist in the northeast Pacific, implying that speciation may not require geographical isolation. Here, I use a novel phylogenetic comparative analysis to show that rockfish speciation is instead associated with divergence in habitat depth and depth-associated morphology, consistent with models of parapatric speciation. Using the same analysis, I find no support for alternative hypotheses that speciation involves divergence in diet or life history, or that speciation involves geographic isolation by latitude. These findings support the hypothesis that rockfishes undergo ecological speciation on an environmental gradient.  相似文献   

12.
Ecological speciation requires divergent selection, reproductive isolation and a genetic mechanism to link the two. We examined the role of gene expression and coding sequence evolution in this process using two species of Howea palms that have diverged sympatrically on Lord Howe Island, Australia. These palms are associated with distinct soil types and have displaced flowering times, representing an ideal candidate for ecological speciation. We generated large amounts of RNA‐Seq data from multiple individuals and tissue types collected on the island from each of the two species. We found that differentially expressed loci as well as those with divergent coding sequences between Howea species were associated with known ecological and phenotypic differences, including response to salinity, drought, pH and flowering time. From these loci, we identified potential ‘ecological speciation genes’ and further validate their effect on flowering time by knocking out orthologous loci in a model plant species. Finally, we put forward six plausible ecological speciation loci, providing support for the hypothesis that pleiotropy could help to overcome the antagonism between selection and recombination during speciation with gene flow.  相似文献   

13.
Ecological speciation occurs when inherent reproductive barriers to gene flow evolve between populations as a result of divergent natural selection. Frequency dependent effects associated with intraspecific resource competition are thought to be one important source of divergent selection facilitating ecological speciation. Interspecific competition may also play an important role in promoting population divergence. Although evidence for interspecific competition in nature is ubiquitous, there is currently little empirical data supporting its role in the speciation process. Here, we discuss two general models in which interspecific competition among species can promote ecological speciation among populations within a species. In both models, interspecific competition is the source of divergent selection driving adaption to different portions of the resource distribution, generating ecological reproductive isolation from other conspecific populations. We propose that the biology of endoparasitoids that attack phytophagous insects make model systems for studying the role of interspecific competition in ecological speciation. We describe details for one such system, the community of endoparasitic braconid wasps attacking Rhagoletis fruit flies, as a potential model for investigating competitive speciation. We conclude by hypothesizing that a model in which interspecific competition forces an inferior competitor to alternative fly hosts may be a common theme contributing to parasitoid diversification in the Rhagoletis-parasitoid system.  相似文献   

14.
Adaptive divergence in coloration is expected to produce reproductive isolation in species that use colourful signals in mate choice and species recognition. Indeed, many adaptive radiations are characterized by differentiation in colourful signals, suggesting that divergent selection acting on coloration may be an important component of speciation. Populations in the Anolis marmoratus species complex from the Caribbean island of Guadeloupe display striking divergence in the colour and pattern of adult males that occurs over small geographic distances, suggesting strong divergent selection. Here we test the hypothesis that divergence in coloration results in reduced gene flow among populations. We quantify variation in adult male coloration across a habitat gradient between mesic and xeric habitats, use a multilocus coalescent approach to infer historical demographic parameters of divergence, and examine gene flow and population structure using microsatellite variation. We find that colour variation evolved without geographic isolation and in the face of gene flow, consistent with strong divergent selection and that both ecological and sexual selection are implicated. However, we find no significant differentiation at microsatellite loci across populations, suggesting little reproductive isolation and high levels of contemporary gene exchange. Strong divergent selection on loci affecting coloration probably maintains clinal phenotypic variation despite high gene flow at neutral loci, supporting the notion of a porous genome in which adaptive portions of the genome remain fixed whereas neutral portions are homogenized by gene flow and recombination. We discuss the impact of these findings for studies of colour evolution and ecological speciation.  相似文献   

15.
A fundamental issue in speciation research is to evaluate phenotypic variation and the genomics driving the evolution of reproductive isolation between sister taxa. Above all, hybrid zones are excellent study systems for researchers to examine the association of genetic differentiation, phenotypic variation and the strength of selection. We investigated two contact zones in the marine gastropod Littorina saxatilis and utilized landmark‐based geometric morphometric analysis together with amplified fragment length polymorphism (AFLP) markers to assess phenotypic and genomic divergence between ecotypes under divergent selection. From genetic markers, we calculated the cline width, linkage disequilibrium and the average effective selection on a locus. Additionally, we conducted an association analysis linking the outlier loci and phenotypic variation between ecotypes and show that a proportion of outlier loci are associated with key adaptive phenotypic traits.  相似文献   

16.
Diverse geographical modes and mechanisms of speciation are known, and individual speciation genes have now been identified. Despite this progress, genome-wide outcomes of different evolutionary processes during speciation are less understood. Here, we integrate ecological and spatial information, mating trials, transplantation data and analysis of 86 130 single nucleotide polymorphisms (SNPs) in eight populations (28 pairwise comparisons) of Timema cristinae stick insects to test the effects of different factors on genomic divergence in a system undergoing ecological speciation. We find patterns consistent with effects of numerous factors, including geographical distance, gene flow, divergence in host plant use and climate, and selection against maladaptive hybridization (i.e. reinforcement). For example, the number of highly differentiated ‘outlier loci’, allele-frequency clines and the overall distribution of genomic differentiation were recognizably affected by these factors. Although host use has strong effects on phenotypic divergence and reproductive isolation, its effects on genomic divergence were subtler and other factors had pronounced effects. The results demonstrate how genomic data can provide new insights into speciation and how genomic divergence can be complex, yet predictable. Future work could adopt experimental, mapping and functional approaches to directly test which genetic regions are affected by selection and determine their physical location in the genome.  相似文献   

17.
The origin of species remains a central question, and recent research focuses on the role of ecological differences in promoting speciation. Ecological differences create opportunities for divergent selection (i.e. ‘ecological’ speciation), a Darwinian hypothesis that hardly requires justification. In contrast, ‘mutation‐order’ speciation proposes that, instead of adapting to different environments, populations find different ways to adapt to similar environments, implying that speciation does not require ecological differences. This distinction is critical as it provides an alternative hypothesis to the prevailing view that ecological differences drive speciation. Speciation by sexual selection lies at the centre of debates about the importance of ecological differences in promoting speciation; here, we present verbal and mathematical models of mutation‐order divergence by sexual selection. We develop three general cases and provide a two‐locus population genetic model for each. Results indicate that alternative secondary sexual traits can fix in populations that initially experience similar natural and sexual selection and that divergent traits and preferences can remain stable in the face of low gene flow. This stable divergence can facilitate subsequent divergence that completes or reinforces speciation. We argue that a mutation‐order process could explain widespread diversity in secondary sexual traits among closely related, allopatric species.  相似文献   

18.
This study uses a comparative genome scan to evaluate the contributions of host plant related divergent selection to genetic differentiation and ecological speciation in maple- and willow-associated populations of Neochlamisus bebbianae leaf beetles. For each of 15 pairwise population comparisons, we identified "outlier loci" whose strong differentiation putatively reflects divergent selection. Of 447 AFLP loci, 15% were outliers across multiple population comparisons, and low linkage disequilibrium indicated that these outliers derived from multiple regions of the genome. Outliers were further classified as "host-specific" if repeatedly observed in "different-host" population comparisons but never in "same-host" comparisons. Outliers exhibiting the opposite pattern were analogously classified as "host-independent." Host-specific outliers represented 5% of all loci and were more frequent than host-independent outliers, thus revealing a large role for host-adaptation in population genomic differentiation. Evidence that host-related selection can promote divergence despite gene flow was provided by population trees. These were structured by host-association when datasets included host-specific outliers, but not when based on neutral loci, which united sympatric populations. Lastly, three host-specific outliers were highly differentiated in all nine different-host comparisons. Because host-adaptation promotes reproductive isolation in these beetles, these loci provide promising candidate gene regions for future molecular studies of ecological speciation.  相似文献   

19.
It is not yet clear under what conditions empirical studies can reliably detect progress toward ecological speciation through the analysis of allelic variation at neutral loci. We use a simulation approach to investigate the range of parameter space under which such detection is, and is not, likely. We specifically test for the conditions under which divergent natural selection can cause a ‘generalized barrier to gene flow’ that is present across the genome. Our individual‐based numerical simulations focus on how population divergence at neutral loci varies in relation to recombination rate with a selected locus, divergent selection on that locus, migration rate and population size. We specifically test whether genetic differences at neutral markers are greater between populations in different environments than between populations in similar environments. We find that this expected signature of ecological speciation can be detected under part of the parameter space, most consistently when divergent selection is strong and migration is intermediate. By contrast, the expected signature of ecological speciation is not reliably detected when divergent selection is weak or migration is low or high. These findings provide insights into the strengths and weaknesses of using neutral markers to infer ecological speciation in natural systems.  相似文献   

20.
Absolute barriers to dispersal are not common in marine systems, and the prevalence of planktonic larvae in marine taxa provides potential for gene flow across large geographic distances. These observations raise the fundamental question in marine evolutionary biology as to whether geographic and oceanographic barriers alone can account for the high levels of species diversity observed in marine environments such as coral reefs, or whether marine speciation also operates in the presence of gene flow between diverging populations. In this respect, the ecological hypothesis of speciation, in which reproductive isolation results from divergent or disruptive natural selection, is of particular interest because it may operate in the presence of gene flow. Although important insights into the process of ecological speciation in aquatic environments have been provided by the study of freshwater fishes, comparatively little is known about the possibility of ecological speciation in marine teleosts. In this study, the evidence consistent with different aspects of the ecological hypothesis of speciation is evaluated in marine fishes. Molecular approaches have played a critical role in the development of speciation hypotheses in marine fishes, with a role of ecology suggested by the occurrence of sister clades separated by ecological factors, rapid cladogenesis or the persistence of genetically and ecologically differentiated species in the presence of gene flow. Yet, ecological speciation research in marine fishes is still largely at an exploratory stage. Cases where the major ingredients of ecological speciation, namely a source of natural divergent or disruptive selection, a mechanism of reproductive isolation and a link between the two have been explicitly documented are few. Even in these cases, specific predictions of the ecological hypothesis of speciation remain largely untested. Recent developments in the study of freshwater fishes illustrate the potential for molecular approaches to address specific questions related to the ecological hypothesis of speciation such as the nature of the genes underlying key ecological traits, the magnitude of their effect on phenotype and the mechanisms underlying their differential expression in different ecological contexts. The potential provided by molecular studies is fully realized when they are complemented with alternative (e.g. ecological, theoretical) approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号