首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanosecond fluorescence studies were performed on mitochondrial aspartate aminotransferase from beef liver to determine whether the dimeric enzyme displays any modes of flexibility in the nanosecond range. The most informative quantities calculated from nanosecond fluorescence measurements S(t) and D(t) decay in a monoexponential manner with decay times τS = 13 and τD = 10 nanoseconds respectively. The observed rotational correlation time θ = 43 M-seconds yields a volume for the dimeric enzyme of 1.97 × 105 Ao3. The rotational correlation time of aspartate aminotransferase is influenced by the presence of the enzyme glutamate dehydrogenase.  相似文献   

2.
Enzymes in intracellular organelles of adult and developing rat brain   总被引:11,自引:0,他引:11  
Eighty percent of the hexokinase and about a half of the lactate dehydrogenase, pyruvate kinase, and aldolase activities of adult rat cerebral homogenates is particulate, associated to a large extent, with the sediment (P2) obtained by centrifugation at 17,000g. Centrifugation of P2 into sucrose gradients shows that all four enzymes are associated with synaptosomes: their peak concentration coincides with that of glutamate decarboxylase rather than with those of mitochondrial enzymes, glutamate dehydrogenase, and aspartate aminotransferase. After hypoosmotic shock and high-speed centrifugation considerable portions of synaptosomal enzymes are recovered in the supernatant phase; the composition of this fluid, as indicated by the higher specific activity of several enzymes, is different from that of the soluble fraction of whole homogenates.The concentration of the seven enzymes studied is considerably lower in fetal than in adult brain and, in general, a larger fraction of the total is soluble. Preferential accumulation with age in the particulate fraction is especially striking in the case of hexokinase. Between fetal and adult life there are changes in the enzymic composition as well as increases in the amount of the total protein attributable to the synaptosomal fraction. Glutamate decarboxylase and lactate dehydrogenase are the synaptosomal enzymes to rise first (before or at birth), followed by hexokinase and, in the third postnatal week, by aldolase and pyruvate kinase. The upsurge of mitochondrial enzymes (that of glutamate dehydrogenase at term and of aspartate aminotransferase 10 days later) is accompanied by insignificant or small increases in the total protein content of the same fraction. The results indicate that the maturation of subcellular organelles involves a stepwise enrichment with various enzymes; some signs of biochemical differentiation precede and others coincide with the development of cerebral functions known to occur in 2- to 4-wk-old rats.  相似文献   

3.
A 2–8-fold increase in the activity of glutamate dehydrogenase (GDH), accompanied by an alteration of the GDH isoenzyme pattern, was observed in detached pea shoots floated on tap water (preincubated shoots). Sugars supressed the process, whereas NH + 4 and various metabolites as well as inhibitors of energy metabolism and protein synthesis were ineffective. The subcellular distribution pattern revealed evidence that the GDH isoenzymes are exclusively located in the mitochondrial matrix. The alterations in GDH activity occurring in preincubated shoots are restricted to the mitochondria.An experimental device suitable for studying the GDH function in isolated intact mitochondria has been established. Using [14C] citrate as the carbon source and hydrogen donor, the mitochondria synthesized considerable amounts of glutamate upon addition of NH + 4 . The rates of glutamate formation in dependency of increasing NH + 4 levels follow simple Michaelis-Menten kinetics. Half-saturation concentrations of NH + 4 of 3.6±1.2 mM; 1.9±0.06 mM and 1.6±0.1 mM were calculated for the mitochondria isolated from pea shoots, roots, and preincubated shoots, respectively. The results are discussed in relation to the possible role of GDH in NH+/4 assimilation at elevated intracellular NH+/4 levels.Abbreviations GDH Glutamate dehydrogenase - MDH malate dehydrogenase - GOT aspartate aminotransferase - SDH succinate dehydrogenase - HEPES 4-(2-hydroxyethyl)-1-piperazineethan-sulfonic acid - BSA bovine serum albumin - TPP thiamine pyrophosphate - DNP 2,4-dinitrophenol - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCPIP 2,6-dichlorophenolindophenol Dedicated to Professor Dr. Maximilian Steiner on the occasion of his 75th birthday  相似文献   

4.
The mitochondrial matrix protein glutamate dehydrogenase of rat liver was synthesized in a cell-free reticulocyte lysate using mRNA from free or membrane-bound polysomes from rat liver. Immunoprecipitation of the (35S)methionine labeled translation mixture was performed using rabbit anti-glutamate dehydrogenase serum. Analysis after electrophoresis of the immunoprecipitate by fluorography of a dried sodium dodecyl sulfate/polyacrylamide gel showed that the glutamate dehydrogenase is synthesized ‘in vitro’ as a large precursor. A mitochondrial extract from rat liver processed the precursor synthesized “in vitro” to the mature form.  相似文献   

5.
A study on the response of the stability and activity of crystalline ox liver nuclear and mitochondrial glutamate dehydrogenases to temperature variations has been carried out. The thermodynamic properties of the heat inactivation process and of the reaction with the substrates glutamate and α-ketoglutarate have been investigated. The heat inactivation of nuclear glutamate dehydrogenase proceeds at a faster rate than that of the mitochondrial enzyme in the temperature range 40–51 °C; the enthalpy of activation of the inactivation process is higher and the entropy is almost double, compared to the values of mitochondrial glutamate dehydrogenase. The effect of temperature on the maximal velocity shows that, with both glutamate and α-ketoglutarate, the enthalpy of activation with nuclear glutamate dehydrogenase is double and the decrease in entropy almost half of the values of the mitochondrial enzyme. The variation of the apparent Km with temperature shows a decrease of the affinity of both enzymes for glutamate, with no major difference in the thermodynamic properties of the reaction. With α-ketoglutarate, on the other hand, the affinity of nuclear glutamate dehydrogenase decreased, whereas that of the mitochondrial enzyme increased with temperature. The process is therefore exothermic with the former enzyme, endothermic with the latter; furthermore, it occurs with a decrease in enthropy with nuclear glutamate dehydrogenase, but with a large increase with the mitochondrial enzyme. The studies on the effect of temperature on the activity were carried out in the range 20–44 °C.  相似文献   

6.
Carbamyl phosphate synthase-I and glutamate dehydrogenase both form a complex with mitochondrial aspartate aminotransferase. Instead of these two enzymes competing for the aminotransferase, carbamyl phosphate synthase-I enhances glutamate dehydrogenase-aminotransferase interaction. This suggests that a complex can be formed between all three enzymes. Since this complex is stable in the presence of substrates and modifiers of the three enzymes, it could conceivably convert NH4+ produced from aspartate into carbamyl phosphate. Furthermore, since carbamyl phosphate synthase-I is the predominant protein in liver mitochondria, it could play a major role in placing the aminotransferase and glutamate dehydrogenase in close proximity. Malate removes glutamate dehydrogenase from the tri-enzyme complex and thus could play a role in determining whether glutamate dehydrogenase interacts with carbamyl phosphate synthase-I or is available to participate in reactions with the Krebs cycle. Palmitoyl-CoA has a high affinity for both carbamyl phosphate synthase-I and glutamate dehydrogenase. ATP and malate which, respectively, decrease and enhance binding of palmitoyl-CoA to glutamate dehydrogenase, respectively decrease and enhance the ability of this enzyme to compete with carbamyl phosphate synthase-I for palmitoyl-CoA. Since carbamyl phosphate synthase-I is present in high levels in liver mitochondria and has a high affinity for palmitoyl-CoA, it could play a major role as a reservoir for palmitoyl-CoA.  相似文献   

7.
Synchronized neuronal activity is vital for complex processes like behavior. Circadian pacemaker neurons offer an unusual opportunity to study synchrony as their molecular clocks oscillate in phase over an extended timeframe (24 h). To identify where, when, and how synchronizing signals are perceived, we first studied the minimal clock neural circuit in Drosophila larvae, manipulating either the four master pacemaker neurons (LNvs) or two dorsal clock neurons (DN1s). Unexpectedly, we found that the PDF Receptor (PdfR) is required in both LNvs and DN1s to maintain synchronized LNv clocks. We also found that glutamate is a second synchronizing signal that is released from DN1s and perceived in LNvs via the metabotropic glutamate receptor (mGluRA). Because simultaneously reducing Pdfr and mGluRA expression in LNvs severely dampened Timeless clock protein oscillations, we conclude that the master pacemaker LNvs require extracellular signals to function normally. These two synchronizing signals are released at opposite times of day and drive cAMP oscillations in LNvs. Finally we found that PdfR and mGluRA also help synchronize Timeless oscillations in adult s-LNvs. We propose that differentially timed signals that drive cAMP oscillations and synchronize pacemaker neurons in circadian neural circuits will be conserved across species.  相似文献   

8.
Radiolabeled GABA and glutamate transport into 7 day, 14 day and adult cortical nerve ending preparations was examined. Transport was measured at several Na+ concentrations, 19, 27, 43 and 121 mM, and at two temperatures, 15 and 30°C. Km and Vmax values were calculated for all experimental conditions by means of Wilkinson (1961) analysis. A comparison of the day 14 and adult data shows higher Km values at all Na+ concentrations on day 14 for both GABA and glutamate transport. In addition, the temperature dependence of transport was attenuated in the day 14 preparation. Finally, the specificity of GABA transport, as measured by the use of the transport inhibitors β-alanine and 2,4-diaminobutyric acid, was not different between the day 14 and adult preparations. Overall, it is concluded that both GABA and glutamate transport into day 14 nerve endings behave as if “adult” transporter molecules were existing in a more fluid lipid environment, which is the situation found in synaptic membranes prepared from day 14 nerve endings (Hitzemann and Johnson, 1983).Glutamate and GABA transport into 7 day nerve endings is complex and shows marked differences from the day 14 and adult data. Day 7 GABA transport was significantly more sensitive to β-alanine inhibition. Day 7 transport was more sensitive to Na+ manipulation and the temperature dependent kinetics show unique Na+ effects not seen in the day 14 or adult preparations. For example, at 19 mM Na+, 7 day glutamate transport was more temperature dependent than adult transport but as the Na+ concentration was increased the reverse was true. The opposite situation for temperature-Na+ effects was seen for GABA transport. Finally, no Ca+2-dependent component of GABA release could be found in 7 day nerve endings while a significant component was found at day 14. Overall, it is concluded that both glutamate and GABA fluxes in 7 day nerve endings differ both qualitatively from that seen in both day 14 and adult nerve endings.  相似文献   

9.
A quantitative light and electron microscope study of developing and degenerating mycorrhizal arbuscules of Glomus fasciculatum in Zea mays was carried out in order to estimate three parameters during the colonization cycle. These were: 1) Vv(f,c), the fraction of the host cell volume occupied by a volume of fungus; 2) Vv(cy,c), the fraction of the host cell volume occupied by host cytoplasm; 3) Sv(pr,c), the surface-area-to-volume ratio of the host protoplast to the whole host cell. Uninfected cortical cells had an Sv(pr,c) of 0.13 μm2/μm3. As the fungus penetrates the cell wall, the protoplast invaginates, causing a decrease in protoplast volume and an increase in protoplast Sv. The Sv(pr,c) of a cell containing a mature arbuscule is 1.275 μm2/μm3. Because of the shrinkage of the protoplast, the Sv of the protoplast to its own volume rather than the original cell volume is 2.55 μm2/μm3, or almost a 20-fold increase. Total cell size is unaffected. When the arbuscule is mature, the fungus occupies 42% of the cell, with 24% as 1-μm-diam branches, and 18% as trunk. Arbuscular branch formation progresses at a linear rate and is the most important factor in causing the increased host Sv. The correlation coefficient for Vv(br,c) the volume fraction for arbuscular branches, vs. Sv(pr,c) is r = 0.932 (P < 0.001). Degeneration of the arbuscule is marked by a rapid decrease in branches, host Sv, and host cytoplasm. The trunk develops and degenerates at a slower rate than the branches.  相似文献   

10.
11.
All the glutamate dehydrogenase activity in developing castor bean endosperm is shown to be located in the mitochondria. The enzyme can not be detected in the plastids, and this is probably not due to the inactivation of an unstable enzyme, since a stable enzyme can be isolated from castor bean leaf chloroplasts. The endosperm mitochondrial glutamate dehydrogenase consists of a series of differently charged forms which stain on polyacrylamide gel electrophoresis with both NAD+ and NADP+. The chloroplast and root enzymes differ from the endosperm enzyme on polyacrylamide gel electrophoresis. The amination reaction of all the enzymes is affected by high salt concentrations. For the endosperm enzyme, the ratio of activity with NADH to that with NADPH is 6.3 at 250 millimolar NH4Cl and 1.5 at 12.5 millimolar NH4Cl. Km values for NH4+ and NAD(P)H are reduced at low salt concentrations. The low Km values for the nucleotides may favor a role for glutamate dehydrogenase in ammonia assimilation in some situations.  相似文献   

12.
Abstract: The ontogeny of binding sites for [3H] spiperone was studied in time-pregnant rats. Binding of [3H]spiperone to fresh homogenates of pre- and postnatal rat forebrain was characterized by Scatchard analysis and competition experiments with a number of dopaminergic and serotonergic agonists and antagonists and additional substances. A convenient discrimination of three high-affinity sites, i.e., the dopaminergic D2, serotonergic S2, and spirodecanone (Sd) sites, was obtained with l-(–)sulpiride and cis-flupenthixol. The analgesic R5573 was found not to be specific for the Sd site but to interact with all three sites. The three binding sites became detectable in sequential order. S2 and D2 binding sites were first found at embryonic days 15.75 and 17.75, respectively. The Sd site did not appear before postnatal day 8. All three binding sites reached adult values at approximately postnatal day 30. During the prenatal period, the increase in the number of D2 binding sites paralleled the rise in forebrain dopamine concentrations. The kinetics of D2 and S2 sites were the same at embryonic day 19.75 and postnatal day 30. These observations provide evidence for the presence of the receptor substrate for actions of neuroleptics on dopaminergic and serotonergic systems during fetal life.  相似文献   

13.
Rhodopseudomonas acidophila strain 7050 assimilated ammonia via a constitutive glutamine synthetase/glutamate synthase enzyme system.Glutamine synthetase had a K m for NH 4 + of 0.38 mM whilst the nicotinamide adenine dinucleotide linked glutamate synthase had a K m for glutamine of 0.55 mM. R. acidophila utilized only a limited range of amino acids as sole nitrogen sources: l-alanine, glutamine and asparagine. The bacterium did not grow on glutamate as sole nitrogen source and lacked glutamate dehydrogenase. When R. acidophila was grown on l-alanine as the sole nitrogen source in the absence of N2 low levels of a nicotinamide adenine dinucleotide linked l-alanine dehydrogenase were produced. It is concluded, therefore, that this reaction was not a significant route of ammonia assimilation in this bacterium except when glutamine synthetase was inhibited by methionine sulphoximine. In l-alanine grown cells the presence of an active alanine-glyoxylate aminotransferase and, on occasions, low levels of an alanine-oxaloacetate aminotransferase were detected. Alanine-2-oxo-glutarate aminotransferase could not be demonstrated in this bacterium.Abreviations ADH alanine dehydrogenase - GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulphoximine  相似文献   

14.
1. Glutamate oxidation in brain and liver mitochondrial systems proceeds mainly through transamination with oxaloacetate followed by oxidation of the α-oxoglutarate formed. Both in the presence and absence of dinitrophenol in liver mitochondria this pathway accounted for almost 80% of the uptake of glutamate. In brain preparations the transamination pathway accounted for about 90% of the glutamate uptake. 2. The oxidation of [1-14C]- and [5-14C]-glutamate in brain preparations is compatible with utilization through the tricarboxylic acid cycle, either after the formation of α-oxoglutarate or after decarboxylation to form γ-aminobutyrate. There is no indication of γ-decarboxylation of glutamate. 3. The high respiratory control ratio obtained with glutamate as substrate in brain mitochondrial preparations is due to the low respiration rate in the absence of ADP: this results from the low rate of formation of oxaloacetate under these conditions. When oxaloacetate is made available by the addition of malate or of NAD+, the respiration rate is increased to the level obtained with other substrates. 4. When the transamination pathway of glutamate oxidation was blocked with malonate, the uptake of glutamate was inhibited in the presence of ADP or ADP plus dinitrophenol by about 70 and 80% respectively in brain mitochondrial systems, whereas the inhibition was only about 50% in dinitrophenol-stimulated liver preparations. In unstimulated liver mitochondria in the presence of malonate there was a sixfold increase in the oxidation of glutamate by the glutamate-dehydrogenase pathway. Thus the operating activity of glutamate dehydrogenase is much less than the `free' (non-latent) activity. 5. The following explanation is put forward for the control of glutamate metabolism in liver and brain mitochondrial preparations. The oxidation of glutamate by either pathway yields α-oxoglutarate, which is further metabolized. Since aspartate aminotransferase is present in great excess compared with the respiration rate, the oxaloacetate formed is continuously removed by the transamination reaction. Thus α-oxoglutarate is formed independently of glutamate dehydrogenation, and the question is how the dehydrogenation of glutamate is influenced by the continuous formation of α-oxoglutarate. The results indicate that a competition takes place between the α-oxoglutarate-dehydrogenase complex and glutamate dehydrogenase, probably for NAD+, resulting in preferential oxidation of α-oxoglutarate.  相似文献   

15.
Enzymatic studies have been performed on a local strain of Aspergillus niger to find a correlation with citric acid accumulation. The activity of aconitase [aconitate hydratase, citrate(isocitrate) hydrolyase, EC 4.2.1.3] and isocitrate dehydrogenase (NADP+) [threo-ds-isocitrate:NADP+ oxidoreductase (decarboxylating) EC 1.1.1.42] decreased after 4 days whereas that of citrate synthase [citrate oxaloacetate-lyase (pro-3S-CH2COO?acetylCoA), EC 4.1.3.7] did so after 8 days, when citric acid accumulation in the medium reached a maximum (45.9 mg ml?1). In vitro studies with mycelial cell-free extracts demonstrated inhibition of citrate synthase activity by sodium azide and potassium ferricyanide on both the 4th and 8th days. Aconitase was inhibited by sodium arsenate, sodium fluoride, iodoacetic acid and potassium ferricyanide only on the 4th day. Isocitrate dehydrogenase (NADP+) activity on the 4th and 8th days was inhibited by iodoacetic acid but was stimulated by potassium ferricyanide. The possible existence of isozyme species of these enzymes is discussed.  相似文献   

16.
Despite extensive research, the regulation of mitochondrial function is still not understood completely. Ample evidence shows that cytosolic Ca2+ has a strategic task in co-ordinating the cellular work load and the regeneration of ATP by mitochondria. Currently, the paradigmatic view is that Cacyt2+ taken up by the Ca2+ uniporter activates the matrix enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and isocitrate dehydrogenase. However, we have recently found that Ca2+ regulates the glutamate-dependent state 3 respiration by the supply of glutamate to mitochondria via aralar, a mitochondrial glutamate/aspartate carrier. Since this activation is not affected by ruthenium red, glutamate transport into mitochondria is controlled exclusively by extramitochondrial Ca2+. Therefore, this discovery shows that besides intramitochondrial also extramitochondrial Ca2+ regulates oxidative phosphorylation. This new mechanism acts as a mitochondrial “gas pedal”, supplying the OXPHOS with substrate on demand. These results are in line with recent findings of Satrustegui and Palmieri showing that aralar as part of the malate–aspartate shuttle is involved in the Ca2+-dependent transport of reducing hydrogen equivalents (from NADH) into mitochondria. This review summarises results and evidence as well as hypothetical interpretations of data supporting the view that at the surface of mitochondria different regulatory Ca2+-binding sites exist and can contribute to cellular energy homeostasis. Moreover, on the basis of our own data, we propose that these surface Ca2+-binding sites may act as targets for neurotoxic proteins such as mutated huntingtin and others. The binding of these proteins to Ca2+-binding sites can impair the regulation by Ca2+, causing energetic depression and neurodegeneration.  相似文献   

17.
The atria and ventricles of the frog and lizard were quantitated using stereologic techniques. The volume fraction (Vv) and surface density (Sv) of the free, junctional and total sarcoplasmic reticulum and mitochondria of the lizard atrium and ventricle were greater than in the corresponding chambers in the frog. Myofibrillar volume fraction and plasmalemmal surface density did not differ between the two species. The volume fraction and surface density of the free and total SR, and myocardial granules were greater in the lizard atrium than ventricle but the myofibrillar Vv and mitochondrial Vv and Sv were less. The Sv of the free SR, total SR, and the Vv and Sv of myocardial granules of the frog atrium were greater than in the frog ventricle. There were no differences between myofibrils and mitochondria in the frog atrium and ventricle.  相似文献   

18.
Extant Palaemonidae occupy aquatic environments that have generated physiological diversity during their evolutionary history. We analyze ultrastructural traits in gills and antennal glands of palaemonid species from distinct osmotic niches, and employ phylogenetic comparative methods to ascertain whether transformations in their osmoregulatory epithelia have evolved in tandem, driven by salinity. Gill pillar cells exhibit apical evaginations whose surface density (Sv, μm2 plasma membrane area/μm3 cytoplasmic volume) ranges from 6.3–7.1 in Palaemon, and 0.7–38.4 in Macrobrachium. In the septal cells, Sv varies from 8.9–10.0 in Palaemon, and 3.3–21.6 in Macrobrachium; mitochondrial volumes (Vmit) range from 43.3–46.8% in Palaemon and 34.9–53.4% in Macrobrachium. In the renal proximal tubule cells, apical microvilli Sv varies from 27.0–34.3 in Palaemon, and 38.3–47.8 in Macrobrachium; basal invagination Sv ranges from 18.7–20.0 in Palaemon and 30.8–40.8 in Macrobrachium. Septal cell Sv shows phylogenetic signal; evagination height/density, apical Sv, and Vmit vary independently of species relatedness. Salt transport capability by the gill and renal epithelia has increased during palaemonid evolution, reflecting amplified membrane availability for ion transporter insertion. These traits underpin the increased osmotic gradients maintained against the external media. Gill ultrastructure and osmotic gradient have evolved in tandem, driven by salinity at the genus level. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 673–688.  相似文献   

19.
In the European Union, the group-housed pregnant sows have to have a minimal legal available area of 2.25 m2/sow. However, it has been observed that an increased space allowance reduces agonistic behaviour and consecutive wounds and thus induces better welfare conditions. But, what about the environmental impacts of this greater available area? Therefore, the aim of this study was to quantify pollutant gases emissions (nitrous oxide, N2O, methane, CH4, carbon dioxide, CO2 and ammonia, NH3), according to the space allowance in the raising of gestating sows group-housed on a straw-based deep litter. Four successive batches of 10 gestating sows were each divided into two homogeneous groups and randomly allocated to a treatment: 2.5 v. 3.0 m2/sow. The groups were separately kept in two identical rooms. A restricted conventional cereals based diet was provided once a day in individual feeding stalls available only during the feeding time. Rooms were automatically ventilated. The gas emissions were measured by infra red photoacoustic detection during six consecutive days at the 6th, 9th and 12th weeks of gestation. Sows performance (body weight gain, backfat thickness, number and weight of piglets) was not significantly different according to the space allowance. In the room with 3.0 m2/sow and compared with the room with 2.5 m2/sow, gaseous emissions were significantly greater for NH3 (6.29 v. 5.37 g NH3-N/day per sow; P < 0.01) and significantly lower for N2O (1.78 v. 2.48 g N2O-N/day per sow; P < 0.01), CH4 (10.15 v. 15.21 g/day per sow; P < 0.001), CO2 equivalents (1.11 v. 1.55 kg/day per sow; P < 0.001), CO2 (2.12 v. 2.41 kg/day per sow; P < 0.001) and H2O (3.10 v. 3.68 kg/day per sow; P < 0.001). In conclusion, an increase of the available area for group-housed gestating sow kept on straw-based deep litter seems to be ambiguous on an environmental impacts point of view. Compared with a conventional and legal available area, it favoured NH3 emissions, probably due to an increased emitting surface. However, about greenhouse gases, it decreased N2O, CH4 and CO2 emissions, probably due to reduced anaerobic conditions required for their synthesis, and led to a reduction of CO2 equivalents emissions.  相似文献   

20.
The effect of aging and CDP-choline treatment (20 mg kg−1 body weight i.p. for 28 days) on the maximal rates (Vmax) of representative mitochondrial enzyme activities related to Krebs’ cycle (citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase), glutamate and related amino acid metabolism (glutamate dehydrogenase, glutamate–oxaloacetate- and glutamate–pyruvate transaminases) were evaluated in non-synaptic and intra-synaptic “light” and “heavy” mitochondria from frontal cerebral cortex of male Wistar rats aged 4, 12, 18 and 24 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号