共查询到20条相似文献,搜索用时 15 毫秒
1.
Paul Cancalon 《Tissue & cell》1983,15(2):245-258
The olfactory mucosa of the catfish (Ictulurus punctatus) has been briefly exposed to various concentrations of the non-ionic detergent Triton X-100. At high concentrations (1–4%) the upper layer of cells constituting the sensory and non-sensory areas of the lamellae is extensively damaged and new receptor cells do not appear in significant number before 2 months after treatment. Respiratory cells regenerate first followed by sustentacular and olfactory receptors. The regenerative process is very similar to that described previously after prolonged contact between the mucosa and ZnSO4. Low detergent concentrations 0.03 – 0.1% affect only the sensory area. Olfactory and sustentacular microvilli and cilia, are immediately severed by the chemical. Regeneration occurs within the next 4 days. The cellular membranes appear also to be affected. From anatomical, electrophysiological and biochemical studies both in vivo and in vitro, it can be hypothesized that receptors involved in the transduction process are solubilized by the detergent but reappear at a level corresponding to 50–60% of their original activity within 2 h.Proteins, having an amino acid binding effectiveness correlated to the amino acid electrophysiological activities measured in vivo, can be isolated from the solubilized material. Further studies will be necessary to confirm that some of these molecules are involved in the olfactory transduction mechanism. 相似文献
2.
During studies of the olfactory mucosa and its response to the different levels of circulating sex hormones, considerable numbers of mast cells have been observed in its epithelia and subepithelial regions. The number of these cells in the olfactory mucosa of male monkeys differs greatly from that found in females. The frequency of these cells in the olfactory mucosa of females fluctuates significantly during the menstrual cycle. These fluctations stimultaneously correspond to the well known changes in olfactory sensitivity: around ovulation, when the olfactory sensitivity for certain odorants is high, the number of mast cells in the olfactory mucosa also increases. 相似文献
3.
Cell dynamics in the olfactory mucosa 总被引:7,自引:0,他引:7
P P Graziadei 《Tissue & cell》1973,5(1):113-131
By means of ultrastructural and autoradiographic observations from the olfactory mucosa of frog, it has been shown that olfactory receptor neurons as well as supporting cells are continuously replaced during the adult life of the animal. The severing of the olfactory nerve in adult frogs results in rapid degeneration of all mature olfactory neurons. An increased mitotic activity of the basal cells accompanies the degeneration of the mature neurons and precedes the regeneration of new neurons. The capability of these newly formed neurons to re-establish their connections in the olfactory bulb has been ascertained and the modalities of the process will be dealt with in a further report. 相似文献
4.
Ultrastructure of mouse olfactory mucosa 总被引:1,自引:0,他引:1
D Frisch 《The American journal of anatomy》1967,121(1):87-120
5.
Previously we reported that methylsulphonyl-2,6-dichlorobenzene, 2, 6-(diCl-MeSO(2)-B), was irreversibly bound to the olfactory mucosa of mice and induced necrosis of the Bowman's glands with subsequent neuroepithelial degeneration and detachment. In this study, autoradiography and histopathology were used to determine tissue-localization and toxicity of 2,6-(diCl-MeSO(2)-B) in the olfactory mucosa of control mice and animals pretreated with cytochrome P450 (CYP) and glutathione (GSH) modulators. The Bowman's glands of the olfactory mucosa were the major target sites of non-extractable binding of 2,6-(diCl-(14)C-MeSO(2)-B), whereas the olfactory neuroepithelium and nerve bundles showed only background levels of silver grains. Metyrapone pretreatment slightly decreased binding in the Bowman's glands and markedly decreased toxicity in the olfactory mucosa after 2,6-(diCl-MeSO(2)-B) administration. These results support that a CYP-mediated activation of 2, 6-(diCl-MeSO(2)-B) takes place in the Bowman's glands giving rise to toxic reactive intermediates. In mice pretreated with the GSH-depleting agent phorone, a marked increase of irreversible binding of 2,6-(diCl-(14)C-MeSO(2)-B) in the Bowman's glands was observed. Tape-section autoradiograms also revealed a significant increase of uptake of radioactivity in the olfactory bulb. As determined by histopathology, GSH-depletion increased both the extent and severity of the lesion in the mucosa. These results imply that 2,6-(diCl-MeSO(2)-B)-reactive intermediates are conjugated with GSH. The amount of irreversible binding and toxicity in the olfactory mucosa seems to be associated with the level of 2, 6-(diCl-MeSO(2)-B)-reactive intermediates. 相似文献
6.
7.
Access to and clearance of ligands from binding sites on olfactorycilia are regulated by a complex interplay of molecular, physicaland cellular factors. Nasal/olfactory glands secrete mucus thatcontains many proteins, among them odorant-binding proteins(OBP) that may solubilize lipophilic odorants in the aqueousmucous phase and subsequently transport them to receptor sites.The rate of transport of the ligandOBP complex or unboundodorant is a function of the diffusion coefficient that, underphysiological conditions, is determined largely by the molecularsize of the complex or unbound odorant, the viscosity of mucusand the tortuosity factor. The binding constants must favorassociation of the ligand with the binding protein, dissociationof the complex and possible reassociation of the ligand withthe odorant receptor. Neural regulation of secretion determinesthe properties of the olfactory mucus that affect ligand accessand clearance, including viscosity, water content and depth.Extrinsic autonomic (adrenergic, cholinergic) and peptidergic(substance P/CGRP, VIP) neurons innervate olfactory glands andregulate both secretory granule release and electrolyte/waterbalance. Extrinsic peptidergic (substance (P/CGRP, VIP) neuronsterminate near the epithelial surface in close apposition tosustentacular cells and olfactory receptor neurons. The substanceP/CGRP fibers, in addition to functioning as sensory fibers,appear to regulate secretion from sustentacular cells througha secretomotor reflex and to neuromodulate the sensitivity ofolfactory receptor neurons to odorant stimulation. The actionof regulatory factors in the olfactory mucosa is an emergingtopic of research focused on molecular, physical and cellularfactors that affect sensory transduction. 相似文献
8.
9.
I Andriason J Leveteau 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1989,309(11):513-518
Bulbar potentials wer bilaterally recorded in the frog following electrical stimulation of one olfactory nerve bundle. The general features of the contralateral evoked response were very similar to those of ipsilateral ones. The contralateral response was shown to be produced in situ, not being electronically transmitted from the bulb on the stimulated side. Its response disappeared after section of the olfactory interbulbar adhesion but was not affected by sectioning through either the anterior or the habenular commissure. It was concluded that messages from the neuroreceptors belonging to either the ventral or the dorsal olfactory mucosa on one side, reach both olfactory bulbs. 相似文献
10.
Electrical stimulation of the human olfactory mucosa was performed by means of an electrode attached to a rhinoscope . Stimulation of the nasal mucosa did not evoke smell sensations, but suppressed smell sensations of presented odorants. When electrical stimulation followed the exposure to an odorant within a certain interval, the stimulus recalled the already faded sensation of the preceding odorant. Electrical stimulation without prior natural stimulation produced unpleasant sensations in 3 patients with a history of temporal lobe seizures and olfactory auras , but not in patients with primary, generalized or focal epilepsy. 相似文献
11.
12.
Location and distribution of nerve fibers immunoreactive to substance P were studied in the mouse olfactory mucosa. A moderately dense plexus of fibers is present at the interface of the olfactory epithelium and the connective tissue of the lamina propria. In addition, many immunoreactive nerve fibers are noted in close association with Bowman's glands and blood vessels in the lamina propria. However, such fibers were not observed in olfactory epithelium proper nor in the fila olfactoria. Substance-P-immunoreactivity is almost totally abolished by treatment of animals with capsaicin, an agent known to deplete substance P from primary sensory neurons. It is suggested that the substance-P-immunoreactive fibers are of sensory origin, with their perikarya most likely located in the trigeminal ganglia. Functionally, they might influence local blood flow and/or the secretion of Bowman's glands. 相似文献
13.
14.
P. Graziadei 《Journal of Zoology》1966,149(1):89-94
The olfactory mucosa of the mole has been studied with the electron microscope. Bipolar ciliated neurons, supporting and basal epithelial cells have been recognized and theirultrastructure described. Morphological differences of the various parts of the sensory neurons have been emphasized. The considerable number of organelles observed in supporting cells and the complexity of their free surface suggests a more active role for these cells than their name implies. 相似文献
15.
16.
17.
18.
19.
The contributions of guanylyl cyclases to sensory signaling in the olfactory system have been unclear. Recently, studies of a specialized subpopulation of olfactory sensory neurons (OSNs) located in the main olfactory epithelium have provided important insights into the neuronal function of one receptor guanylyl cyclase, GC-D. Mice expressing reporters such as β-galactosidase and green fluorescent protein in OSNs that normally express GC-D have allowed investigators to identify these neurons in situ, facilitating anatomical and physiological studies of this sparse neuronal population. The specific perturbation of GC-D function in vivo has helped to resolve the role of this guanylyl cyclase in the transduction of olfactory stimuli. Similar approaches could be useful for the study of the orphan receptor GC-G, which is expressed in another distinct subpopulation of sensory neurons located in the Grueneberg ganglion. In this review, we discuss key findings that have reinvigorated the study of guanylyl cyclase function in the olfactory system. 相似文献
20.
The effects of the thiol-specific reagent N-ethylmaleimide (NEM)used in the vapour phase have been tested on the olfactory epitheliumof the frog when recording the electro-olfactogram (EOG) andspike activity from single receptor cells. The reagent was deliveredalone or mixed with the odorant isoamyl acetate. At low concentrationthe reagent induced slow potentials resembling simple EOGs.At higher concentrations (20% of the saturated vapour) threenegative and one positive slow components were observed in theresponse. A complex relationship was found between the amplitudeof the slow potential and the concentration of the reagent.Repeated stimulations at high concentration caused the suppressionof the negative voltage transients and the development of thepositive component. NEM vapour elicited spike discharges insome of the recorded units, with the responses resembling thoseevoked by usual odorants. After long-lasting stimulations (30 sec) with NEM, the receptorsfailed to respond to both reagent and odorant. This suppressionof response could be partly prevented by exposing the olfactoryepithelium to the odorant vapour before and during the exposureto the reagent (protection). The results indicate that NEM acts on the olfactory epitheliumin several ways, including an odorant-like action on olfactoryreceptor sites. An effect on the supporting cells is also suggested.Hypotheses for explaining the protection mechanism are considered. 相似文献