首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteolytic enhancement of rotavirus infectivity: molecular mechanisms   总被引:57,自引:42,他引:15       下载免费PDF全文
The polypeptide compositions of single-shelled and double-shelled simian rotavirus particles were modified by exposure to proteolytic enzymes. Specifically, a major outer capsid polypeptide (VP3) having a molecular weight of 88,000 in double-shelled particles was cleaved by trypsin to yield two polypeptides, VP5* and VP8* (molecular weights, 60,000 and 28,000, respectively). The cleavage of VP3 by enzymes that enhanced infectivity (trypsin, elastase, and pancreatin) yielded different products compared to those detected when VP3 was cleaved by chymotrypsin, which did not enhance infectivity. The appearance of VP5* was correlated with an enhancement of infectivity. Cleavages of the major internal capsid polypeptide VP2 were also observed. The VP2 cleavage products had molecular weights similar to those of known structural and nonstructural rotavirus polypeptides. We confirmed the precursor-product relationships by comparing the peptide maps of the polypeptides generated by digestions with V-8 protease and chymotrypsin. The remaining rotavirus structural polypeptides, including the outer capsid glycoproteins (VP7 and 7a), were not altered by exposure to pancreatic enzymes. Cleavage of VP3 was not required for virus assembly, and specific cleavage of the polypeptides occurred only on assembled particles. We also discuss the role of cleavage activation in other virus-specific biological functions (e.g., hemagglutination and virulence).  相似文献   

2.
Two types of empty capsid particles that differed with respect to the presence of the two outer shell proteins were isolated from MA-104 cells infected with bovine rotavirus V1005. Three previously uncharacterized polypeptides, I, II, and III, migrating between VP2 and VP6, were detected in empty capsids but not in single- and double-shelled rotavirus particles. Peptide mapping revealed that all three proteins were related to VP2. Polypeptides I, II, and III could be generated by in vitro trypsin digestion of empty capsids not exposed to trypsin in the infection medium. Labeled polypeptides appeared in empty capsids before they were detected in intracellular single- or double-shelled rotavirus particles. Empty capsids were also observed in MA-104 cells infected with bovine rotaviruses UK and NCDV, simian rotavirus SA11, and human rotavirus KU. VP7-containing empty capsid is the minimal subunit vaccine for cows; we failed to induce a substantial neutralizing antibody increase with VP7 purified under denaturating or nondenaturating conditions or with synthetic peptides corresponding to two regions of VP7.  相似文献   

3.
Guanidine-resistant defective interfering particles of poliovirus.   总被引:2,自引:2,他引:0       下载免费PDF全文
A mixture containing standard poliovirus and D3 particles (mutants with deletions in the capsid locus) was serially passaged in the presence of guanidine. Within five growth cycles, the standard virus was guanidine resistant, but the D3 particles were guanidine sensitive, even after 21 passages with the inhibitor. By passage 40 with guanidine, D3 particles were eliminated, and a new deletion mutant (DX) appeared in the virus population. D3 particles contained a 15% deletion, and DX particles contained a 6% deletion in the capsid locus. Although neither mutant induced the synthesis of NCVP1a or a complete complement of capsid proteins after infection, cells infected with DX particles produced two novel proteins, which had molecular weights of approximately 68,000 and 25,000.  相似文献   

4.
Herpes simplex virus type 1 (HSV-1) capsids were found to assemble spontaneously in a cell-free system consisting of extracts prepared from insect cells that had been infected with recombinant baculoviruses coding for HSV-1 capsid proteins. The capsids formed in this system resembled native HSV-1 capsids in morphology as judged by electron microscopy, in sedimentation rate on sucrose density gradients, in protein composition, and in their ability to react with antibodies specific for the HSV-1 major capsid protein, VP5. Optimal capsid assembly required the presence of extracts containing capsid proteins VP5, VP19, VP23, VP22a, and the maturational protease (product of the UL26 gene). Assembly was more efficient at 27 degrees C than at 4 degrees C. The availability of a cell-free assay for HSV-1 capsid formation will be of help in identifying the morphogenetic steps that occur during capsid assembly in vivo and in evaluating candidate antiherpes therapeutics directed at capsid assembly.  相似文献   

5.
We established a human cell line which was persistently infected (PI) by the normally cytolytic echovirus 6. All of the cultured PI cells contained genome-size viral RNA which was synthesized continuously and incorporated into virus particles. This steady-state infection has been maintained for more than 6 years. In contrast to RNA of wild-type echovirus 6, the viral RNA from PI cells was not lytic when transfected into uninfected, susceptible cells. The capsid polypeptides of the virus particles produced during lytic infections were compared with those of virus particles from PI cells. Wild-type virions contained five polypeptides with molecular masses of 31.5, 27, 25.8, 21.2, and 9.5 kilodaltons. Comparison of polypeptide profiles of virions and empty immature capsids along with peptide analyses by immunoblotting and partial proteolysis of isolated viral proteins identified the cleavage products of the 31.5-kilodalton polypeptide (VP0) as the two smaller polypeptides (VP2 and VP4). The virus particles produced by PI cells as well as cellular extracts of PI cells contained only the three largest proteins (VP0, VP1, and VP3), indicating that VP0 was not processed during persistent infection. The lack of VP2 and VP4 in the defective virus particles coincided with their inability to attach to uninfected, susceptible cells. The maintenance of the steady-state infection of echovirus 6 was not dependent upon the release of virus particles from PI cells.  相似文献   

6.
The nucleotide sequence of 7200 bases of encephalomyocarditis (EMC) viral RNA, including the complete polyprotein-coding region, was determined. The polyprotein is encoded within a unique translational reading frame, 6870 bases in length. Protein synthesis begins with the sequence Met-Ala-Thr, and ends with the sequence Leu-Phe-Trp, 126 bases from the 3' end of the RNA. Viral capsid and noncapsid proteins were aligned with the deduced amino acid sequence of the polyprotein. The proteolytic processing map follows the standard 4-3-4 picornaviral pattern except for a short leader peptide (8 kd), which precedes the capsid proteins. Identification of the proteolytic cleavage sites showed that EMC viral protease, p22, has cleavage specificity for gln-gly or gln-ser sequences with adjacent proline residues. The cleavage specificity of the host-coded protease(s) includes both tyr-pro and gln-gly sequences.  相似文献   

7.
Polyadenylated cytoplasmic RNA from polyoma virus-infected cells can be translated in the wheat germ system to yield all there polyoma virus capsid proteins, VP1, VP2, and VP3. The translation products of RNA selected from total cytoplasmic RNA of infected cells by hybridization to polyoma virus DNA showed a high degree of enrichment for VP1, VP2, and VP3. The identity of the in vitro products with authentic virion proteins was established in two ways. First, tryptic peptide maps of the in vitro products were found to be essentially identical to those of their in vivo counterparts. Second, the mobilities of the in vitro products on two-dimensional gels were the same as those of viral proteins labeled in vivo. VP1, VP2, and vp3 were all labeled with [35S] formylmethionine when they were synthesized in the presence of [35S] formylmethionyl-tRNAfmet. We determined the sizes of the polyadenylated mRNA's for VP1, VP2, and VP3 by fractionation on gels. The sizes of the major mRNA species for the capsid proteins are as follows: VP2, 8.5 X 10(5) daltons; VP3, 7.4 X 10(5) daltons; and VP1, 4.6 X 10(5) daltons. We conclude that all three viral capsid proteins are synthesized independently in vitro, that all three viral capsid proteins are virally coded, and that each of the capsid proteins has a discrete mRNA.  相似文献   

8.
The structures of infectious human parvovirus B19 and empty wild-type particles were determined by cryoelectron microscopy (cryoEM) to 7.5-Å and 11.3-Å resolution, respectively, assuming icosahedral symmetry. Both of these, DNA filled and empty, wild-type particles contain a few copies of the minor capsid protein VP1. Comparison of wild-type B19 with the crystal structure and cryoEM reconstruction of recombinant B19 particles consisting of only the major capsid protein VP2 showed structural differences in the vicinity of the icosahedral fivefold axes. Although the unique N-terminal region of VP1 could not be visualized in the icosahedrally averaged maps, the N terminus of VP2 was shown to be exposed on the viral surface adjacent to the fivefold β-cylinder. The conserved glycine-rich region is positioned between two neighboring, fivefold-symmetrically related VP subunits and not in the fivefold channel as observed for other parvoviruses.  相似文献   

9.
VP90, the capsid polyprotein precursor of human astrovirus Yuc8, is assembled into viral particles, and its processing at the carboxy terminus by cellular caspases, to yield VP70, has been correlated with the cell release of the virus. Here, we characterized the effect of the VP90-VP70 processing on the properties of these proteins, as well as on their intracellular distribution. VP90 was found in membrane-enriched fractions (mVP90), as well as in fractions enriched in cytosolic proteins (cVP90), while VP70 was found exclusively in the latter fractions. Upon trypsin activation, infectivity was detected in all VP90-containing fractions, confirming that both mVP90 and cVP90 are able to assemble into particles; however, the two forms of VP90 showed differential sensitivities to trypsin, especially at their carboxy termini, which in the case of mVP90 was shown to remain membrane associated after protease digestion. Structural protein oligomers were detected in purified VP70-containing viruses, as well as in membrane-enriched fractions, but they were less evident in cytosolic fractions. Ultrastructural studies of infected cells revealed different types of viral particles, some of which appeared to be associated with membranes. By immunoelectron microscopy, structural proteins were shown to form virus particles in clusters and to associate with the edges of vesicles induced during infection, which also appear to contain subviral particles inside. Nonstructural proteins and viral RNA colocalized with mVP90, but not with cVP90, suggesting that mVP90 might represent the form of the protein that is initially assembled into particles, at the sites where the virus genome is being replicated.  相似文献   

10.
Hepatitis A virus (HAV) encodes a single polyprotein which is posttranslationally processed into the functional structural and nonstructural proteins. Only one protease, viral protease 3C, has been implicated in the nine protein scissions. Processing of the capsid protein precursor region generates a unique intermediate, PX (VP1-2A), which accumulates in infected cells and is assumed to serve as precursor to VP1 found in virions, although the details of this reaction have not been determined. Coexpression in transfected cells of a variety of P1 precursor proteins with viral protease 3C demonstrated efficient production of PX, as well as VP0 and VP3; however, no mature VP1 protein was detected. To identify the C-terminal amino acid residue of HAV VP1, we performed peptide sequence analysis by protease-catalyzed [18O]H2O incorporation followed by liquid chromatography ion-trap microspray tandem mass spectrometry of HAV VP1 isolated from purified virions. Two different cell culture-adapted isolates of HAV, strains HM175pE and HM175p35, were used for these analyses. VP1 preparations from both virus isolates contained heterogeneous C termini. The predominant C-terminal amino acid in both virus preparations was VP1-Ser274, which is located N terminal to a methionine residue in VP1-2A. In addition, the analysis of HM175pE recovered smaller amounts of amino acids VP1-Glu273 and VP1-Thr272. In the case of HM175p35, which contains valine at amino acid position VP1-273, VP1-Thr272 was found in addition to VP1-Ser274. The data suggest that HAV 3C is not the protease responsible for generation of the VP1 C terminus. We propose the involvement of host cell protease(s) in the production of HAV VP1.  相似文献   

11.
A model has previously been proposed for the genetic relatedness of the structural proteins of polyoma virus, based upon similarities in the peptide maps of the major capsid protein VP1 with the virion proteins VP2 and VP3. Newer evidence suggests that this model is incorrect, and that protein VP1 is a product of one viral gene and that the multiple components of VP2 and VP3 are products of a second viral gene. Two-dimensional peptide maps of several preparations of polyoma purified separately from four separate infected-cell lysates has shown a variable content of VP1 peptides in proteins VP2 and VP3, with some preparations being free of detectable VP1 material in VP2 and VP3. An alternative explanation for the presence of VP1 peptides in the regions of VP2 and VP3 of some polyoma preparations involves the cleavage of proteins of polyoma virions during exposure to proteolytic enzymes in lysates of infected cells or to endogenous proteolytic activity of virions. Prolonged incubation of infected-cell lysates at 37 degrees C leads to an increase in the amount of 86,000-dalton dimer of VP1, a decrease in the relative amount of VP1, a decrease in or a loss of the lower band of VP2, and the appearance of a new major protein band of approximately 29,000 daltons. Two-dimensional peptide maps of the new 29,000-dalton protein show that it contains some VP1 peptides, indicating that this protein is derived from proteolytic cleavage of VP1. In addition, extensively purified polyoma virus contains a proteolytic activity that can be activated during disruption of the virus with 0.2 M Na2CO3-NaHCO3 (pH 10.6) in the presence of 5 X 10(-3) M dithiothreitol.  相似文献   

12.
We have demonstrated the synthesis of a 74,000-dalton protein (74K protein) in African green monkey kidney cells infected with simian virus (SV)40. The 74K protein was detected late during the lytic cycle. Its synthesis was inhibited by arabinosyl cytosine as was the synthesis of the capsid proteins. Monospecific antibodies raised against VP1 and VP3 precipitated the structural proteins and the 74K protein. The 74K protein was not found in purified virions. Tryptic peptide analysis demonstrated that the 74K protein shares methionine- and serine-containing peptides with VP1 and VP3 and thus is structurally related to the capsid proteins.  相似文献   

13.
P Desai  S C Watkins    S Person 《Journal of virology》1994,68(9):5365-5374
Herpes simplex virus type 1 (HSV-1) B capsids are composed of seven proteins, designated VP5, VP19C, 21, 22a, VP23, VP24, and VP26 in order of decreasing molecular weight. Three proteins (21, 22a, and VP24) are encoded by a single open reading frame (ORF), UL26, and include a protease whose structure and function have been studied extensively by other investigators. The protease encoded by this ORF generates VP24 (amino acids 1 to 247), a structural component of the capsid and mature virions, and 21 (residues 248 to 635). The protease also cleaves C-terminal residues 611 to 635 of 21 and 22a, during capsid maturation. Protease activity has been localized to the N-terminal 247 residues. Protein 22a and probably the less abundant protein 21 occupy the internal volume of capsids but are not present in virions; therefore, they may form a scaffold that is used for B capsid assembly. The objective of the present study was to isolate and characterize a mutant virus with a null mutation in UL26. Vero cells were transformed with plasmid DNA that encoded ORF UL25 through UL28 and screened for their ability to support the growth of a mutant virus with a null mutation in UL27 (K082). Four of five transformants that supported the growth of the UL27 mutant also supported the growth of a UL27-UL28 double mutant. One of these transformants (F3) was used to isolate a mutant with a null mutation in UL26. The UL26 null mutation was constructed by replacement of DNA sequences specifying codons 41 through 593 with a lacZ reporter cassette. Permissive cells were cotransfected with plasmid and wild-type virus DNA, and progeny viruses were screened for their ability to grow on F3 but not Vero cells. A virus with these growth characteristics, designated KUL26 delta Z, that did not express 21, 22a, or VP24 during infection of Vero cells was isolated. Radiolabeled nuclear lysates from infected nonpermissive cells were layered onto sucrose gradients and subjected to velocity sedimentation. A peak of radioactivity for KUL26 delta Z that sedimented more rapidly than B capsids from wild-type-infected cells was observed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the gradient fractions showed that the peak fractions contained VP5, VP19C, VP23, and VP26. Analysis of sectioned cells and of the peak fractions of the gradients by electron microscopy revealed sheet and spiral structures that appear to be capsid shells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Direct insertion of amino acid sequences into the adeno-associated virus type 2 (AAV) capsid open reading frame (cap ORF) is one strategy currently being developed for retargeting this prototypical gene therapy vector. While this approach has successfully resulted in the formation of AAV particles that have expanded or retargeted viral tropism, the inserted sequences have been relatively short, linear receptor binding ligands. Since many receptor-ligand interactions involve nonlinear, conformation-dependent binding domains, we investigated the insertion of full-length peptides into the AAV cap ORF. To minimize disruption of critical VP3 structural domains, we confined the insertions to residue 138 within the VP1-VP2 overlap, which has been shown to be on the surface of the particle following insertion of smaller epitopes. The insertion of coding sequences for the 8-kDa chemokine binding domain of rat fractalkine (CX3CL1), the 18-kDa human hormone leptin, and the 30-kDa green fluorescent protein (GFP) after residue 138 failed to lead to formation of particles due to the loss of VP3 expression. To test the ability to complement these insertions with the missing capsid proteins in trans, we designed a system for producing AAV vectors in which expression of one capsid protein is isolated and combined with the remaining two capsid proteins expressed separately. Such an approach allows for genetic modification of a specific capsid protein across its entire coding sequence leaving the remaining capsid proteins unaffected. An examination of particle formation from the individual components of the system revealed that genome-containing particles formed as long as the VP3 capsid protein was present and demonstrated that the VP2 capsid protein is nonessential for viral infectivity. Viable particles composed of all three capsid proteins were obtained from the capsid complementation groups regardless of which capsid proteins were supplied separately in trans. Significant overexpression of VP2 resulted in the formation of particles with altered capsid protein stoichiometry. The key finding was that by using this system we successfully obtained nearly wild-type levels of recombinant AAV-like particles with large ligands inserted after residue 138 in VP1 and VP2 or in VP2 exclusively. While insertions at residue 138 in VP1 significantly decreased infectivity, insertions at residue 138 that were exclusively in VP2 had a minimal effect on viral assembly or infectivity. Finally, insertion of GFP into VP1 and VP2 resulted in a particle whose trafficking could be temporally monitored by using confocal microscopy. Thus, we have demonstrated a method that can be used to insert large (up to 30-kDa) peptide ligands into the AAV particle. This system allows greater flexibility than current approaches in genetically manipulating the composition of the AAV particle and, in particular, may allow vector retargeting to alternative receptors requiring interaction with full-length conformation-dependent peptide ligands.  相似文献   

15.
16.
17.
Herpes simplex virus type 1 (HSV-1) intermediate capsids are composed of seven proteins, VP5, VP19C, VP21, VP22a, VP23, VP24, and VP26, and the genes that encode these proteins, UL19, UL38, UL26, UL26.5, UL18, UL26, and UL35, respectively. The UL26 gene encodes a protease that cleaves itself and the product of the UL26.5 gene at a site (M site) 25 amino acids from the C terminus of these two proteins. In addition, the protease cleaves itself at a second site (R site) between amino acids 247 and 248. Cleavage of the UL26 protein gives rise to the capsid proteins VP21 and VP24, and cleavage of the UL26.5 protein gives rise to the capsid protein VP22a. Previously we described the production of HSV-1 capsids in insect cells by infecting the cells with recombinant baculoviruses expressing the six capsid genes (D. R. Thomsen, L. L. Roof, and F. L. Homa, J. Virol. 68:2442-2457, 1994). Using this system, we demonstrated that the products of the UL26 and/or UL26.5 genes are required as scaffolds for assembly of HSV-1 capsids. To better understand the functions of the UL26 and UL26.5 proteins in capsid assembly, we constructed baculoviruses that expressed altered UL26 and UL26.5 proteins. The ability of the altered UL26 and UL26.5 proteins to support HSV-1 capsid assembly was then tested in insect cells. Among the specific mutations tested were (i) deletion of the C-terminal 25 amino acids from the proteins coded for by the UL26 and UL26.5 genes; (ii) mutation of His-61 of the UL26 protein, an amino acid required for protease activity; and (iii) mutation of the R cleavage site of the UL26 protein. Analysis of the capsids formed with wild-type and mutant proteins supports the following conclusions: (i) the C-terminal 25 amino acids of the UL26 and UL26.5 proteins are required for capsid assembly; (ii) the protease activity associated with the UL26 protein is not required for assembly of morphologically normal capsids; and (iii) the uncleaved forms of the UL26 and UL26.5 proteins are employed in assembly of 125-nm-diameter capsids; cleavage of these proteins occurs during or subsequent to capsid assembly. Finally, we carried out in vitro experiments in which the major capsid protein VP5 was mixed with wild-type or truncated UL26.5 protein and then precipitated with a VP5-specific monoclonal antibody.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Two types of intranuclear capsids have been recovered from human cytomegalovirus (HCMV, strain AD169)-infected cells. By analogy with strain Colburn (simian CMV) particles, these have been designated as A- and B-capsids. Both types of capsids are composed of proteins with molecular weights of 153,000 (major capsid protein), 34,000 (minor capsid protein), 28,000, and 11,000 (smallest capsid protein). In addition to these species, B-capsids contain a 36,000-molecular-weight (36K) protein which has been designated as the HCMV "assembly protein," based on its similarities to counterparts in strain Colburn CMV (i.e., 37K protein) and herpes simplex virus (i.e., VP22a/p40/NC-3/ICP35e). Peptide comparisons established that the assembly protein of HCMV B-capsids and the 36K protein that distinguishes HCMV noninfectious enveloped particles from virions are the same, providing direct evidence that noninfectious enveloped particles are enveloped B-capsids.  相似文献   

19.
Polyomavirus normally assembles in the nucleus of infected mouse cells. Sf9 insect cells expressing the polyomavirus major capsid protein VP1 were examined by electron microscopy. Capsidlike particles of apparently uniform size were found in the nucleus. Immunogold electron microscopy demonstrated abundant VP1 in the cytoplasm which was not assembled into any recognizable higher-order structure. Cytoplasmic VP1 assembled after the cells were treated with the calcium ionophore ionomycin. Purified VP1 aggregates were shown by negative staining and cryoelectron microscopy to consist predominantly of particles similar to the empty T = 7 viral capsid. Thus, polyomavirus VP1 can assemble in vivo into capsids independent of other viral proteins or DNA. Nuclear assembly may result from increased available calcium in this subcellular compartment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号