首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黑曲霉(AspergilluS niger)AS 3.3883所产果胶酶经DEAE Sephadex A50及Sephadex G100柱层析分离出电泳纯的两种聚半乳糖醛酸酶(PG1,PG2),并对它们的性质及结构进行了比较研究。结果证明两种酶作用的最适条件、动力学性质、分子量、氨基酸组成及金属离子对酶活力影响等方面有很大差异,但二者的每个摩尔的活力及酶的构象很相似。  相似文献   

2.
Aspergillus carbonarius, when grown by submerged and solid-state fermentation, produces different molecular forms of polygalacturonase (PG; EC 3.2.1.15), among them a 42 kDa PG with a high specific activity of 7000 U/mg protein. When the enzymes were purified by integrated membrane process (IMP) and alginate affinity precipitation (AAP), the two processes concentrated different forms of the enzyme. The AAP process selectively purified and concentrated the high active PG whereas the IMP yielded different PGs and also amylase and protease. Evaluation of the AAP enzyme preparations for apple juice preparation under conditions usually employed commercially demonstrated that the high activity PG did not result in good juice clarity. With IMP processed enzymes, juice yields and clarity were similar to that obtained with commercial PG from A. niger.  相似文献   

3.
The enzyme 6-phosphogluconate dehydrogenase (6PGD) of the malaria parasite Plasmodium falciparum catalyzes the third step of the pentose phosphate pathway converting 6-phosphogluconate (6PG) to ribulose 5-phosphate. The NADPH produced by 6PGD is crucial for antioxidant defense and redox regulation, and ribose 5-phosphate is essential for DNA and RNA synthesis in the rapidly growing parasite. Thus, 6PGD represents an attractive antimalarial drug target. In this study, we present the X-ray structures of Pf6PGD in native form as well as in complex with 6PG or nicotinamide adenine dinucleotide phosphate (NADP+) at resolutions of 2.8, 1.9, and 2.9?Å, respectively. The overall structure of the protein is similar to structures of 6PGDs from other species; however, a flexible loop close to the active site rearranges upon binding of 6PG and likely regulates the conformation of the cofactor NADP+. Upon binding of 6PG, the active site loop adopts a closed conformation. In the absence of 6PG, the loop opens and NADP+ is bound in a waiting position, indicating that the cofactor and 6PG bind independently from each other. This sequential binding mechanism was supported by kinetic studies on the homodimeric wild-type Pf6PGD. Furthermore, the function of the Plasmodium-specific residue W104L mutant was characterized by site-directed mutagenesis. Notably, the activity of Pf6PGD was found to be post-translationally redox regulated via S-nitrosylation, and screening the Medicines for Malaria Venture Malaria Box identified several compounds with IC50s in the low micromolar range. Together with the three-dimensional structure of the protein, this is a promising starting point for further drug discovery approaches.  相似文献   

4.
Prostaglandin (PG) endoperoxide synthetase was purified until homogeneity had been attained. The pure enzyme displays both cyclooxygenase and peroxidase activity, in accordance with the work of MIYAMOTO et al. (J. biol. Chem. 252, 2629--2636 (1976)). This enzyme therefore converts arachidonic acid into PGH2. Glutathione S-transferases, in the presence of glutathione, convert PGH2 into a mixture of PGF2alpha, PGE2 and PGD2. A new transferase in sheep lung gives mainly PGF2alpha and PGD2. Isolation and properties of these enzymes will be discussed. Finally, progress will be reported on the isolation of a soluble enzyme from various rat organs such as lung and spleen, which forms almost exclusively prostaglandin D.  相似文献   

5.
The developmental profile of prostaglandin (PG)-synthesizing enzymes in liver was investigated in rats from the fetus to 2 years old. In the neonatal period, the activities of PGD2-(2.7 nmol/min/mg protein) and PGE2-(2.2 nmol/min/mg protein) synthesizing enzymes were predominant, whereas PGE2-synthesizing enzyme alone further increased in activity during adult to old ages (5.2-6.1 nmol/min/mg protein). In order to determine the sites of PGs production in rat liver, we prepared hepatocytes and non-hepatocytes by a collagenase digestion method. Regardless of the ages we examined, the major PG produced in the hepatocytes was proved to be PGE2, on the other hand, PGD2 was almost exclusively produced in the non-hepatocytes. These results suggest that each PG may have individual roles in the development of rat liver.  相似文献   

6.
7.
The full-length bovine lung prostaglandin(PG) F synthase cDNA was constructed from partial cDNA clones and ligated into bacterial expression vector pUC8 to develop expression plasmid pUCPF1. This plasmid permitted the synthesis of bovine lung PGF synthase in Escherichia coli. The recombinant bacteria overproduced a 36-KDa protein that was recognized by anti-PGF synthase antibody, and the expressed protein was purified to apparent homogeneity. The expressed protein reduced not only carbonyl compounds including PGD2 and phenanthrenequinone but also PGH2; and the Km values for phenanthrenequinone, PGD2, and PGH2 of the expressed protein were 0.1, 100, and 8 microM, respectively, which are the same as those of the bovine lung PGF synthase. The protein produced PGF2 alpha from PGH2, and 9 alpha, 11 beta-PGF2 from PGD2 at different active sites. Moreover, the structure of the purified protein from Escherichia coli was essentially identical to that of the native enzyme in terms of C-terminal sequence, sulfhydryl groups, and CD spectra except that the nine amino acids provided by the lac Z' gene of the vector were fused to the N-terminus. These results indicate that the expressed protein is essentially identical to bovine lung PGF synthase. We confirmed that PGF synthase is a dual function enzyme catalyzing the reduction of PGH2 and PGD2 on a single enzyme and that it has one binding site for NADPH.  相似文献   

8.
Various inorganic selenocompounds dose-dependently inhibited the rat brain prostaglandin (PG) D synthase, both in the purified enzyme preparation and in the crude brain supernatant. All of the quadrivalent selenium compounds tested had a very limited range of IC50 values in the purified enzyme (11-12 microM) and in the brain supernatant (9-15 microM). A divalent selenium compound was also inhibitory, but a hexavalent selenium compound was ineffective. In contrast, organic selenocompounds such as selenomethionine and selenourea had no effect on the PGD synthase activity. Furthermore, sodium sulfate and sodium sulfite up to 10 mM did not inhibit the activity. The inhibition by selenium required the preincubation of the metal with sulfhydryl compounds such as dithiothreitol (DTT), indicating that the formation of selenotrisulfide or some other adduct(s) is essential for the inhibition. Furthermore, the inhibition was reversed by an excess amount of dithiothreitol, suggesting that the selenotrisulfide derivative of DTT binds to the SH group of the PGD synthase. The kinetic analysis revealed the inhibition by selenite to be noncompetitive with a Ki value of 10.1 microM. On the other hand, glutathione-dependent PGD synthase from rat spleen was much less inhibited, and PGF synthase and PGD2 11-ketoreductase activities were not inhibited by the selenium compound.  相似文献   

9.
The developmental changes of prostaglandin (PG) synthesizing enzymes in the digestive system (stomach and small intestine) and the immune system (spleen and thymus) of rats were investigated. In all the digestive organs, the predominant PG produced from PGH2 changed at around 2 weeks after birth to another PG. Further, the predominant activities of PG synthesizing enzymes were different organ by organ in the digestive system. In the case of the immune system, only the activity of PGD2 synthesizing enzyme displayed a significant increase during development and the activities of other PG synthesizing enzymes remained insignificant throughout the development. These results suggest that PGs may play important roles during the development of each organ.  相似文献   

10.
Activation of mast cells by aggregation of their high-affinity IgE receptors stimulates prostaglandin (PG) D(2) synthesis and secretion. An immediate phase of PGD(2) synthesis, complete within 30 min, is followed by a delayed, second phase of PGD(2) production that reaches a maximum 4 to 8 h after activation. Activation of mast cells from COX-2 (-/-) mice stimulates the release of PGD(2) during the first 30 min, whereas activation of mast cells from COX-1 (-/-) mice does not generate any PGD(2) in the first 2 h. On the other hand, COX-2 (-/-) cells do not participate in delayed phase of PGD(2) synthesis, while COX-1 (-/-) cells secrete low levels of PGD(2) between 2 and 4 h after activation. These data demonstrate that (i) the first phase of PG synthesis is COX-1 dependent and (ii) the second, delayed phase of PG synthesis is dependent on activation-induced synthesis and activity of COX-2.  相似文献   

11.
Molecular mechanisms of sleep-wake regulation: a role of prostaglandin D2   总被引:3,自引:0,他引:3  
Prostaglandin (PG) D2 is a major prostanoid in the brains of rats and other mammals, including humans. When PGD synthase (PGDS), the enzyme that produces PGD2 in the brain, was inhibited by the intracerebroventricular infusion of its selective inhibitors, i.e. tetravalent selenium compounds, the amount of sleep decreased both time and dose dependently. The amount of sleep of transgenic mice, in which the human PGDS gene had been incorporated, increased several fold under appropriate conditions. These data indicate that PGDS is a key enzyme in sleep regulation. In situ hybridization, immunoperoxidase staining and direct enzyme activity determination of tissue samples revealed that PGDS is hardly detectable in the brain parenchyma but is localized in the membrane systems surrounding the brain, namely, the arachnoid membrane and choroid plexus, from which it is secreted into the cerebrospinal fluid (CSF) to become beta-trace, a major protein component of the CSF. PGD2 exerts its somnogenic activity by binding to PGD2 receptors exclusively localized at the ventrorostral surface of the basal forebrain. When PGD2 was infused into the subarachnoid space below the rostral basal forebrain, striking expression of proto-oncogene Fos immunoreactivity (FosIR) was observed in the ventrolateral preoptic area (VLPO), a putative sleep centre, concurrent with sleep induction. Fos expression in the VLPO was positively correlated with the preceding amount of sleep and negatively correlated with Fos expression in the tuberomammillary nucleus (TMN), a putative wake centre. These observations suggest that PGD2 may induce sleep via leptomeningeal PGD2 receptors with subsequent activation of the VLPO neurons and downregulation of the wake neurons in the TMN area. Adenosine may be involved in the signal transduction associated with PGD2.  相似文献   

12.
The biological actions of prostaglandin (PG) D(2) include vasodilatation, bronchoconstriction, inhibition of platelet aggregation, and recruitment of inflammatory cells. Characterization of DP receptor null mice in which antigen-induced airway and inflammatory responses are attenuated and identification of CRTH2 as a novel PGD(2) receptor have shed light on the role of PGD(2) in the immune and inflammatory responses. Hematopoietic PGD synthase (H-PGDS) is a cytosolic enzyme that isomerizes PGH(2), a common precursor for all PGs and thromboxanes, to PGD(2) in a glutathione-dependent manner. H-PGDS is expressed in mast cells, antigen-presenting cells, and Th2 cells, and is the only mammalian member of the Sigma class of cytosolic glutathione S-transferases. In this review, we focus on the molecular biology of H-PGDS, the determination of its three-dimensional structure, characterization of the regulation of its gene expression, and information gleaned from transgenic animals.  相似文献   

13.
Extracts from apple fruit (cultivar "Granny Smith") inhibited the cell-wall degrading polygalacturonase (PG) activity of Colletotrichum lupini, the causal agent of anthracnose on lupins, as well as Aspergillus niger PG. Southern blot analysis indicated that this cultivar of apple has a small gene family of polygalacturonase inhibiting proteins (pgips), and therefore heterologous expression in transgenic tobacco was used to identify the specific gene product responsible for the inhibitory activity. A previously isolated pgip gene, termed Mdpgip1, was introduced into tobacco (Nicotiana tabacum) by Agrobacterium-mediated transformation. The mature MdPGIP1 protein was purified to apparent homogeneity from tobacco leaves by high salt extraction, clarification by DEAE-Sepharose and cation exchange HPLC. Purified MdPGIP1 inhibited PGs from C. lupini and PGs from two economically important pathogens of apple trees, Botryosphaeria obtusa and Diaporthe ambigua. It did not inhibit the A. niger PG, which was in contrast to the apple fruit extract used in this study. We conclude that there are at least two active PGIPs expressed in apple, which differ in their charge properties and ability to inhibit A. niger PG.  相似文献   

14.
A solid phase, particle concentration fluorescence immunoassay (PCFIA) was developed for the measurement of prostaglandin (PG) D synthase in the 100,000g supernatant of various regions of the rat central nervous system. In this assay, the enzyme (in the range of 1-25 micrograms protein of brain supernatant or 1-100 ng of the purified enzyme) is attached to submicrometer carboxypolystyrene beads coated with polyclonal anti-rat brain PGD synthase IgG. The total particle-bound enzyme is assayed with fluorescein isothiocyanate (FITC)-conjugated monoclonal anti-PGD synthase IgG after incubation for 1 h. The optimum assay condition was obtained when carboxyl particles coated with ca. 500 micrograms/ml of polyclonal IgG at pH 5.0 and 5 micrograms/ml of FITC-IgG were used. No significant fluorescence was observed when FITC conjugates or carboxyl particles were prepared using IgG from nonimmunized rabbits. Heat treatment of the brain supernatant decreased the specific binding of the enzyme in parallel with the loss of enzyme activity, indicating that the denatured enzyme is not recognized by this assay method. The PGD synthase immunoreactivity was widely distributed in the brain regions and was highest in the paraflocculus. Although slight discrepancy was observed between the concentration by PCFIA and the enzyme activity measured by using [14C]PGH2 in some brain regions, there is a considerable correlation (0.727) between the values by both methods in the same brain regions. The PCFIA now developed showed higher sensitivity (around 10 times), greater reliability, and larger number of samples measurable at once than the radio-TLC assay using [14C]PGH2. This method could provide valuable information concerning the regulatory mechanisms of PGD synthase.  相似文献   

15.
We have recently shown that two distinct prostaglandin (PG) E(2) synthases show preferential functional coupling with upstream cyclooxygenase (COX)-1 and COX-2 in PGE(2) biosynthesis. To investigate whether other lineage-specific PG synthases also show preferential coupling with either COX isozyme, we introduced these enzymes alone or in combination into 293 cells to reconstitute their functional interrelationship. As did the membrane-bound PGE(2) synthase, the perinuclear enzymes thromboxane synthase and PGI(2) synthase generated their respective products via COX-2 in preference to COX-1 in both the -induced immediate and interleukin-1-induced delayed responses. Hematopoietic PGD(2) synthase preferentially used COX-1 and COX-2 in the -induced immediate and interleukin-1-induced delayed PGD(2)-biosynthetic responses, respectively. This enzyme underwent stimulus-dependent translocation from the cytosol to perinuclear compartments, where COX-1 or COX-2 exists. COX selectivity of these lineage-specific PG synthases was also significantly affected by the concentrations of arachidonate, which was added exogenously to the cells or supplied endogenously by the action of cytosolic or secretory phospholipase A(2). Collectively, the efficiency of coupling between COXs and specific PG synthases may be crucially influenced by their spatial and temporal compartmentalization and by the amount of arachidonate supplied by PLA(2)s at a moment when PG production takes place.  相似文献   

16.
J. FIEDUREK, J. SZCZODRAK AND J. ROGALSKI. 1995. A simple method for the immobilization of Aspergillus niger mycelium producing polygalacturonase (PG) and pectinesterase (PE) is described. Fungal conidia were immobilized on wheat, rye, barley, peas, buckwheat and mustards seeds. Spongy mycelia overgrowing the seed surfaces on mineral medium with pectin produced extracellular PG and PE; the highest production was reached on the wheat carrier. Some of the variables influencing the enzymatic activity have been optimized. After every 24 h, a culture liquid with 6˙8–7˙8 U of PG ml−1 and 7˙0–10˙1 U of PE ml−1 was obtained. This procedure also made possible repeated batch enzyme production and, as many as eight subsequent 24-h batches could be fermented by using the same carrier without any loss of PG activity. The addition of sodium orthovanadate (1 mmol) into the medium with pectin caused a significant increase in PG and PE activity produced by free cells of A. niger (by 1˙59-fold and 1˙67-fold respectively), and only 0˙47-fold of PG activity in case of the immobilized mycelium.  相似文献   

17.
Lipid mediators generated from metabolism of arachidonic acid play a crucial role in the initiating and resolution of acute inflammation by shifting from pro-inflammatory prostaglandin (PG) E2 to anti-inflammatory PGD2 and its metabolites. The changes in PG levels over time during the normal wound-repair process have not, however, been reported. We determined the temporal expression of PG and their biosynthetic enzymes using the full thickness incisional model of normal wound healing in mice. We demonstrate that during normal wound repair, there is a shift in the metabolism of arachidonate from PGE2 during the acute inflammatory phase to PGD2 during the repair phase. This shift is mediated by temporal changes in the expression of cyclooxygenases (COX) and microsomal PGES (mPGES)-1. Inducible COX (COX-2) expression is sustained throughout the initiation and repair process, but mPGES-1 is increased only during the acute inflammatory phase and its disappearance coincides with increased PGD2. PGD2 and its degradation products are known to mediate their anti-inflammatory effects by binding to peroxisome proliferators-activated receptor gamma (PPARgamma). In this study, we show that PPARgamma is upregulated during the resolution phase of wound repair concomitant with the shift to PGD2, and may be responsible for initiating endogenous mechanism resulting in healing/resolution.  相似文献   

18.
M Nakajima  N Toda 《Prostaglandins》1984,27(3):407-419
Treatment with prostaglandin (PG) D2 in concentrations (10(-8) to 10(-7) M) insufficient to alter the basal tone potentiated the contractile response of helical strips of dog mesenteric arteries to transmural electrical stimulation but did not influence the response to norepinephrine. The potentiating effect of PGD2 was not prevented by treatment with diphloretin phosphate, a PG antagonist, whereas contractions of dog cerebral arteries induced by PGD2 were suppressed. The 3H-overflow evoked by transmural stimulation in superfused mesenteric arterial strips previously soaked in 3H-norepinephrine containing media was significantly increased in PGD2. It is concluded that PGD2 increases the stimulation-evoked release of norepinephrine from adrenergic nerves innervating the arterial wall. PGD2 appears to act differently on receptive sites responsible for increasing the release of norepinephrine and for producing arterial contraction.  相似文献   

19.
A variety of prostaglandin (PG) synthases with different evolutionary origins have been identified. These enzymes catalyze reduction and oxidation reactions. However, despite the similarity in their reactions, thioredoxin-like proteins were not found in the PG synthesis pathway until recently. We have identified two new enzymes, thioredoxin-type PGF synthase and membrane-associated PGE synthase-2, with thioredoxin-like domains. In addition, the N-terminal domain of hematopoietic PGD synthase is classified into the thioredoxin-like superfamily, based on structural similarity. The active sites of the former two enzymes have a CXXC motif, which is also critical for the thioredoxin activity. In contrast, hematopoietic PGD synthase lacks the motif, and the activity is carried out by glutathione. A phylogenetic tree of the thioredoxin-like domains suggests that they have been independently recruited into these PG synthases. We will discuss the functional meaning of the thioredoxin-like domains in the PG synthases from the viewpoint of the redox activity.  相似文献   

20.
We describe prostaglandin (PG) biosynthesis by microsomal-enriched fractions of fat body prepared from larvae of the tenebrionid beetle, Zophobas atratus. PG biosynthesis was sensitive to incubation time, temperature, pH, substrate and protein concentration. Optimal PG biosynthesis conditions of those we examined included 2 mg of microsomal-enriched protein, incubated at 22 degrees C for 2 min at pH 6. These preparations yielded four major PGs: PGA(2), PGE(2), PGD(2) and PGF(2 alpha). PGA(2) and PGF(2 alpha) were the predominant eicosanoids produced under these conditions. Two non-steroidal anti-inflammatory drugs, indomethacin and naproxen, effectively inhibited PG biosynthesis in low concentrations. In vitro PG biosynthetic reaction conditions, using vertebrate or invertebrate enzyme sources, usually include a cocktail of reaction co-factors. The Z. atratus preparation similarly performs better in the presence of co-factors. Arch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号