首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Norin-PL8 is a cold-tolerant variety of rice (Oryza sativa L.) that was developed by introgressing chromosomal segments from a cold-tolerant tropical japonica variety, Silewah, into a template japonica variety, Hokkai241. We previously identified two closely linked quantitative trait loci, Ctb1 and Ctb2, for cold tolerance at the booting stage of Norin-PL8 in the long arm of chromosome 4. We report here the physical mapping of Ctb1 and the identification of the candidate genes. A total of 2,008 segregating individuals were screened for recombination in the Ctb1 region by a PCR-based screening, and a series of near-isogenic lines (NILs) were developed from progenies of recombinants. A comparison of the degrees of cold tolerance of the NILs indicated that Ctb1 is located in the 56-kb region covered by a bacterial artificial chromosome clone, OSJNBa0058 K23, that had been sequenced by the International Rice Genome Sequence Project. We found seven open reading frames (ORFs) in the 56-kb region. Two ORFs encoded receptor-like protein kinases that are possibly involved in signal transduction pathways. Proteins that may be associated with a ubiquitin-proteasome pathway were encoded by three ORFs, two of which encoded F-box proteins and one of which encoded a protein with a BAG domain. The other two ORFs encoded a protein with an OTU domain and an unknown protein. We were also able to show that Ctb1 is likely to be associated with anther length, which is one of major factors in cold tolerance at the booting stage.  相似文献   

2.
3.
桂敏  曾亚文  杜娟  普晓英  申时全  杨树明  张浩 《遗传》2006,28(8):972-976
2004年在海拔1916m昆明两种冷害(水温19.5±0.7℃,低田温冷泉水温17.8±1.1℃)、阿子营冷害(海拔2150m,水温18.2±0.22℃)条件下对5个亲本及其25个近等基因系进行耐冷性鉴定,用Statistica对17个农艺性状进行形态聚类和SSR分子标记聚类分析。结果表明:(1)已培育的穗期耐冷性NILs与轮回亲本十和田的形态极为相似,但与耐冷性相关的性状(穗颈长、实粒数、结实率、花药长和花药体积)有明显的差异;(2)从78个SSR标记筛选出了7个标记在十和田和NILs间存在多态性, 其中RM7452标记与耐冷基因连锁,各个近等基因系间遗传背景相似,但与十和田耐冷性差异大,证明了这些NILs是水稻穗期耐冷基因精细定位和克隆的理想材料。  相似文献   

4.
An earlier study identified quantitative trait loci (QTLs) lb4, lb5b, and lb11b for quantitative resistance to Phytophthora infestans (late blight) in a backcross population derived from crossing susceptible cultivated tomato (Lycopersicon esculentum) with resistant L. hirsutum. The QTLs were located in intervals spanning 28–47 cM. Subsequently, near-isogenic lines (NILs) were developed for lb4, lb5b, and lb11b by marker-assisted backcrossing to L. esculentum. Sub-NILs containing overlapping L. hirsutum segments across each QTL region were selected and used to validate the QTL effects, fine-map QTLs, and evaluate potential linkage drag between resistance QTLs and QTLs for horticultural traits. The NILs and sub-NILs were evaluated for disease resistance and eight horticultural traits at three field locations. Resistance QTLs were detected in all three sets of NIL lines, confirming the BC1 mapping results. Lb4 mapped near TG609, and between TG182 and CT194, on chromosome 4, a 6.9-cM interval; lb5b mapped to an 8.8-cM interval between TG69a and TG413 on chromosome 5, with the most likely position near TG23; and lb11b mapped to a 15.1-cM interval on chromosome 11 between TG194 and TG400, with the peak centered between CT182 and TG147. Most QTLs for horticultural traits were identified in intervals adjacent to those containing the late blight resistance QTLs. Fine mapping of these QTLs permits the use of marker-assisted selection for the precise introgression of L. hirsutum segments containing late blight resistance alleles separately from those containing deleterious alleles at horticulturally important QTLs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by D.B. Neale  相似文献   

5.
Low temperature or cold stress is one of the major constraints of rice production and productivity in temperate rice-growing countries and high-altitude areas in the tropics. Even though low temperature affects the rice plant in all stages of growth, the percent seed set is damaged severely by cold and this reduces the yield potential of cultivars significantly. In this study, a new source of cold-tolerant line, IR66160-121-4-4-2, was used as a donor parent with a cold-sensitive cultivar, Geumobyeo, to produce 153 F8 recombinant inbred lines (RILs) for quantitative trait locus (QTL) analysis. QTL analysis with 175 polymorphic simple sequence repeat (SSR) markers and composite interval mapping identified three main-effect QTLs (qPSST-3, qPSST-7, and qPSST-9) on chromosomes 3, 7, and 9. The SSR markers RM569, RM1377, and RM24545 were linked to the identified QTLs for cold tolerance with respect to percent seed set using cold-water (18–19°C) irrigation in the field and controlled air temperature (17°C) in the greenhouse. The total phenotypic variation for cold tolerance contributed by the three QTLs was 27.4%. RILs with high percent seed set under cold stress were validated with linked DNA markers and by haplotype analysis that revealed the contribution of progenitor genomes from the tropical japonica cultivar Jimbrug (Javanica) and temperate japonica cultivar Shen-Nung89-366. Three QTLs contributed by the cold-tolerant parent were identified which showed additive effect on percent seed set under cold treatment. This study demonstrated the utility of a new phenotyping method as well as the identification of SSR markers associated with QTLs for selection of cold-tolerant genotypes to improve temperate rice production.  相似文献   

6.
Cold stress is one of the main constraints in rice production, and damage from cold can occur at different developmental stages in rice. Understanding the genetic basis of cold tolerance is the key for breeding cold-tolerant variety. In this study, we used single segment substitution lines (SSSLs) derived from a cross between cold-tolerant japonica variety “Nan-yang-zhan” and a popular indica variety “Hua-jing-xian 74” to detect and pyramid QTLs for cold tolerance at the bud bursting and the seedling stages. Evaluation of cold tolerance of these SSSLs and their recurrent parent helped identify two cold-tolerant QTLs (qCTBB-5 and qCTBB-6) at the bud bursting stage and two cold-tolerant QTLs (qCTS-6 and qCTS-12) at the seedling stage. The SSSLs carrying these QTLs showed stronger cold tolerance than their recurrent parent HJX74 did in three independent experiments. The qCTBB-6 and qCTS-6 were mapped to the same chromosomal region. QTL pyramiding was performed by intercrossing of SSSLs carrying the respective QTLs for cold tolerance at the bud bursting stage and the seedling stage and marker-assisted selection (MAS). The selected pyramiding line SC1-1 with different cold-tolerant QTLs showed cumulative effects on cold tolerance. Our results suggest that different genes (QTLs) control cold tolerance at bud bursting and seedling stages, and pyramiding of stable expression QTLs for cold tolerance at different developmental stages through MAS is a good strategy to prevent cold damage in rice.  相似文献   

7.
Pot experiments with copper-treated soil and a control were performed in a greenhouse to determine QTLs for copper tolerance in wheat, using deletion, introgression and single chromosome recombinant lines. Genetic and physical mapping identified loci for copper tolerance on the long arm of chromosomes 5A and 5D, while loci with minor effects were found on the long and short arms of chromosome 5B. Tests on ‘Chinese Spring’–Aegilops tauschii introgression lines revealed a locus influencing copper tolerance on chromosome 3DS. QTLs for copper tolerance on chromosome 5A were mapped genetically and physically to exactly the same position as the gene for vernalization requirement (Vrn-A1). It is therefore suggested that Vrn-A1 may have a pleiotropic effect on copper tolerance may be due to the control of Cbf genes.  相似文献   

8.
The effect of low temperature on the physiology of maize has been well studied, but the genetics behind cold tolerance is poorly understood. To better understand the genetics of cold tolerance we conducted a quantitative trait locus (QTL) analysis on a segregating population from the cross of a cold-tolerant (EP42) and a cold-susceptible (A661) inbred line. The experiments were carried under cold (15 °C) and control (25 °C) conditions in a phytotron. Cold temperature reduced the shoot dry weight, number of survival plants and quantum yield of electron transport at photosystem II (ΦPSII) and increased the anthocyanin content in maize seedlings. Low correlations were found between characteristics under low and optimum temperature. Ten QTLs were identified, six of them at control temperatures and four under cold temperatures. Through a meta-QTL analysis we identified three genomic regions in chromosomes 2, 4 and 8 that regulate the development of maize seedlings under cold conditions and are the most promising regions to be the target of future marker-assisted selection breeding programs or to perform fine mapping to identify genes involved in cold tolerance in maize.  相似文献   

9.
A high-resolution physical map targeting a cluster of yield-related QTLs on the long arm of rice chromosome 9 has been constructed across a 37.4 kb region containing seven predicted genes. Using a series of BC3F4 nearly isogenic lines (NILs) derived from a cross between the Korean japonica cultivar Hwaseongbyeo and Oryza rufipogon (IRGC 105491), a total of seven QTLs for 1,000-grain weight, spikelets per panicle, grains per panicle, panicle length, spikelet density, heading date and plant height were identified in the cluster (P ≤ 0.0001). All seven QTLs were additive, and alleles from the low-yielding O. rufipogon parent were beneficial in the Hwaseongbyeo background. Yield trials with BC3F4 NILs showed that lines containing a homozygous O. rufipogon introgression in the target region out-yielded sibling NILs containing Hwaseongbyeo DNA by 14.2–17.7%, and out-yielded the Hwaseongbyeo parent by 16.2–23.7%. While higher yielding plants containing the O. rufipogon introgression were also taller and later than controls, the fact that all seven of the QTLs were co-localized in the same 37.4 kb interval suggests the possibility that a single, pleiotropic gene acting as a major regulator of plant development may control this suite of agronomically important plant phenotypes. Xiaobo Xie and Fengxue Jin have contributed equally to this study.  相似文献   

10.
A quantitative trait locus (QTL) for cold tolerance at the booting stage of a cold-tolerant rice breeding line, Hokkai-PL9, was analyzed. A total of 487 simple sequence repeat (SSR) markers distributed throughout the genome were used to survey for polymorphism between Hokkai-PL9 and a cold-sensitive breeding line, Hokkai287, and 54 markers were polymorphic. Single marker analysis revealed that markers on chromosome 8 are associated with cold tolerance. By interval mapping using an F2 population between Hokkai-PL9 and Hokkai287, a QTL for cold tolerance was detected on the short arm of chromosome 8. The QTL explains 26.6% of the phenotypic variance, and its additive effect is 11.4%. Substitution mapping suggested that the QTL is located in a 193-kb interval between SSR markers RM5647 and PLA61. We tentatively designated the QTL as qCTB8 (quantitative trait locus for cold tolerance at the booting stage on chromosome 8).  相似文献   

11.
A marker-assisted back-crossing (MABC) breeding programme was conducted to improve the root morphological traits, and thereby drought tolerance, of the Indian upland rice variety, Kalinga III. This variety, the recurrent parent in the MABC, had not previously been used for quantitative trait locus (QTL) mapping. The donor parent was Azucena, an upland japonica variety from Philippines. Five segments on different chromosomes were targeted for introgression; four segments carried QTLs for improved root morphological traits (root length and thickness) and the fifth carried a recessive QTL for aroma. Some selection was made at non-target regions for recurrent parent alleles. We describe the selection made in three backcross (BC) generations and two further crosses between BC3 lines to pyramid (stack) all five target segments. Pyramids with four root QTLs were obtained in eight generations, completed in 6 years using 3,000 marker assays in a total of 323 lines. Twenty-two near-isogenic lines (NILs) were evaluated for root traits in five field experiments in Bangalore, India. The target segment on chromosome 9 (RM242-RM201) significantly increased root length under both irrigated and drought stress treatments, confirming that this root length QTL from Azucena functions in a novel genetic background. No significant effects on root length were found at the other four targets. Azucena alleles at the locus RM248 (below the target root QTL on chromosome 7) delayed flowering. Selection for the recurrent parent allele at this locus produced early-flowering NILs that were suited for upland environments in eastern India.  相似文献   

12.
Drosophila melanogaster is a cosmopolitan species that colonizes a great variety of environments. One trait that shows abundant evidence for naturally segregating genetic variance in different populations of D. melanogaster is cold tolerance. Previous work has found quantitative trait loci (QTL) exclusively on the second and the third chromosomes. To gain insight into the genetic architecture of cold tolerance on the X chromosome and to compare the results with our analyses of selective sweeps, a mapping population was derived from a cross between substitution lines that solely differed in the origin of their X chromosome: one originates from a European inbred line and the other one from an African inbred line. We found a total of six QTL for cold tolerance factors on the X chromosome of D. melanogaster. Although the composite interval mapping revealed slightly different QTL profiles between sexes, a coherent model suggests that most QTL overlapped between sexes, and each explained around 5–14% of the genetic variance (which may be slightly overestimated). The allelic effects were largely additive, but we also detected two significant interactions. Taken together, this provides evidence for multiple QTL that are spread along the entire X chromosome and whose effects range from low to intermediate. One detected transgressive QTL influences cold tolerance in different ways for the two sexes. While females benefit from the European allele increasing their cold tolerance, males tend to do better with the African allele. Finally, using selective sweep mapping, the candidate gene CG16700 for cold tolerance colocalizing with a QTL was identified.  相似文献   

13.
Low temperature at the booting stage is a serious abiotic stress in rice, and cold tolerance is a complex trait controlled by many quantitative trait loci (QTL). A QTL for cold tolerance at the booting stage in cold-tolerant near-isogenic rice line ZL1929-4 was analyzed. A total of 647 simple sequence repeat (SSR) markers distributed across 12 chromosomes were used to survey for polymorphisms between ZL1929-4 and the cold-sensitive japonica cultivar Towada, and nine were polymorphic. Single marker analysis revealed that markers on chromosome 7 were associated with cold tolerance. By interval mapping using an F2 population from ZL1929-4 × Towada, a QTL for cold tolerance was detected on the long arm of chromosome 7. The QTL explained 9 and 21% of the phenotypic variances in the F2 and F3 generations, respectively. Recombinant plants were screened for two flanking markers, RM182 and RM1132, in an F2 population with 2,810 plants. Two-step substitution mapping suggested that the QTL was located in a 92-kb interval between markers RI02905 and RM21862. This interval was present in BAC clone AP003804. We designated the QTL as qCTB7 (quantitative trait locus for cold tolerance at the booting stage on chromosome 7), and identified 12 putative candidate genes.  相似文献   

14.
Soil temperatures at 15°C or below limit germination and seedling establishment for warm season cereal crops such as sorghum (Sorghum bicolor (L.) Moench) during early-season planting. To better understand the genetics of early-season cold tolerance in sorghum, mapping of quantitative trait loci (QTL) associated with germination, emergence and vigor using a recombinant inbred mapping population was carried out. A mapping population consisting of 171 F7–F8 recombinant inbred lines (RILs) derived from the cross between RTx430 (cold-sensitive) and PI610727 (cold-tolerant) was developed and a genetic map was constructed using 141 microsatellites or simple sequence repeat (SSR) markers. The RILs were evaluated for cold and optimal temperature germinability in the laboratory, field emergence, and seedling vigor in two locations during early-season planting. Two or more QTL were detected for all traits, except for seedling vigor, with only one QTL was detected in the population. A QTL for cold germinability (Germ 12-2.1) showed the highest LOD value and was also associated with optimal germinability. One of the QTL for field emergence, Fearlygerm-9.3, a contribution from PI610727, was found significant in both locations used for the study. This study showed alignment of QTL in SBi1 (Fearlygerm-1.2 and FGerm30-1.2) with previously reported QTL associated with late field emergence identified from a different mapping population. This indicates that PI617027 shares some common loci with other known early-season cold-tolerant sorghum germplasm but also harbors novel QTL that could be useful in introgression of enhanced laboratory germination and early-season field emergence.  相似文献   

15.
Zhang X  Zhou S  Fu Y  Su Z  Wang X  Sun C 《Plant molecular biology》2006,62(1-2):247-259
Construction of introgression lines using cultivated rice as recipient and wild rice is a novel approach to explore primitive and broad genetic resources in rice breeding. We recently generated a set of 159 introgression lines via a backcrossing program using an elite Indica cultivar rice Guichao 2 (O. sativa L. ssp. indica) as recipient and a common wild rice Dongxiang accession (O. rufipogon Griff.) as donor. In this study, we have evaluated the previously constructed 159 introgression lines for drought-tolerance. A total of 12 quantitative trait loci (QTLs) related to drought tolerance were mapped. Furthermore, a drought tolerant introgression line, IL23, was identified and characterized. Genotype analysis of IL23 demonstrated that IL23 contained two QTLs associated with drought tolerance, qSDT2-1 and qSDT12-2, which were located on chromosome 2 and 12 within the two introgressed segments derived from the common wild rice, respectively. Physiological characterization, including measurement of water loss, osmotic potential, electrolytical leakage, MDA content, soluble sugars content and the leaf temperature, revealed that IL23 showed the characteristics associated with drought tolerance. Identification and characterization of IL23 would provide a useful basis for isolation of novel genes associated with drought tolerance and for molecular breeding of drought tolerant rice. Furthermore, the results in this study indicated that construction of introgression lines from common wild rice should be an appropriate approach to obtain favorable genetic materials.  相似文献   

16.

Key message

Three regions with quantitative resistance to downy mildew of non-host and wild lettuce species, Lactuca saligna , disintegrate into seventeen sub-QTLs with plant-stage-dependent effects, reducing or even promoting the infection.

Abstract

Previous studies on the genetic dissection of the complete resistance of wild lettuce, Lactuca saligna, to downy mildew revealed 15 introgression regions that conferred plant stage dependent quantitative resistances (QTLs). Three backcross inbred lines (BILs), carrying an individual 30–50 cM long introgression segment from L. saligna in a cultivated lettuce, L. sativa, background, reduced infection by 60–70 % at young plant stage and by 30–50 % at adult plant stage in field situations. We studied these three quantitative resistances in order to narrow down their mapping interval and determine their number of loci, either single or multiple. We performed recombinant screenings and developed near isogenic lines (NILs) with smaller overlapping L. saligna introgressions (substitution mapping). In segregating introgression line populations, recombination was suppressed up to 17-fold compared to the original L. saligna × L. sativa F 2 population. Recombination suppression depended on the chromosome region and was stronger suppressed at the smallest introgression lengths. Disease evaluation of the NILs revealed that the resistance of all three BILs was not explained by a single locus but by multiple sub-QTLs. The 17 L. saligna-derived sub-QTLs had a smaller and plant stage dependent resistance effect, some segments reducing; others even promoting downy mildew infection. Implications for lettuce breeding are outlined.  相似文献   

17.
The consistency of quantitative trait locus (QTL) effects among genetic backgrounds is a key factor for introgressing QTLs from initial mapping experiments into applied breeding programs. We have selected four QTLs (fs6.4, fw4.3, fw4.4 and fw8.1) involved in melon fruit morphology that had previously been detected in a collection of introgression lines derived from the cross between a Spanish cultivar, “Piel de Sapo,” and the Korean accession PI161375 (Songwan Charmi). Introgression lines harboring these QTLs were crossed with an array of melon inbred lines representative of the most important cultivar types. Hybrids of the introgression and inbred lines, with the appropriate controls, were evaluated in replicated agronomic trials. The effects of the QTLs were consistent among the different genetic backgrounds, demonstrating the utility of these QTLs for applied breeding programs in modifying melon fruit morphology. Three QTLs, fw4.4, fs6.4 and fs12.1 were subjected to further study in order to map them more accurately by substitution mapping using a new set of introgression lines with recombination events within the QTL chromosome region. The position of the QTLs was narrowed down to 36–5 cM, depending on the QTL. The results presented in the current study set the basis for the use of these QTLs in applied breeding programs and for the molecular characterization of the genes underlying them.  相似文献   

18.
QTLs for cold tolerance-related traits at the booting stage using balanced population for 1525 recombinant inbred lines of near-isogenic lines (viz.NIL-RILs for BC5F3 and BC5F4 and BC5F5) over 3 years and two locations by backcrossing the strongly cold-tolerant landrace (Kunmingxiaobaigu) and a cold-sensitive cultivar (Towada) was analyzed. In this study, 676 microsatellite markers were employed to identify QTLs conferring cold tolerance at booting stage. Single marker analysis revealed that 12 markers associated with cold tolerance on chromosome 1, 4 and 5. Using a LOD significance threshold of 3.0,compositive interval mapping based on a mixed linear model revealed eight QTLs for 10 cold tolerance-related traits on chromosomes 1, 4, and 5. They were tentatively designatedqCTB-1-1, qCTB-4-1, qCTB-4-2, qCTB-4-3, qCTB-4-4, qCTB-4-5, qCTB-4-6, andqCTB-5-1. The marker intervals of them were narrowed to 0.3-6.8 cM. Genetic distances between the peaks of the QTL and nearest markers varied from 0 to 0.04 cM. We were noticed in some traits associated cold tolerance, such asqCTB-1-1 for 5 traits (plant height, panicle exsertion, spike length, blighted grains per spike and spikelet fertility),qCTB-4-1 for 8 traits (plant height, node length under spike, leaf length, leaf width, spike length, full grains per spike, total grains per spike and spikelet fertility),qCTB-4-2 for 3 traits (spike length, full grains per spike and spikelet fertility),qCTB-5-1 for 5 traits (plant height, panicle exsertion, blighted grains per spike, full grains per spike and spikelet fertility). The variance explained by a single QTL ranged from 0.80 to 16.80%. Three QTLs (qCTB-1-1, qCTB-4-1, qCTB-4-2) were detected in two or more trials. Our study sets a foundation for cloning cold-tolerance genes and provides opportunities to understand the mechanism of cold tolerance at the booting stage.  相似文献   

19.
20.
fs8.1 is a major fruit-shape QTL differentiating fresh-market and processing tomatoes. Mature fruits from plants with the wild-type fresh-market alleles are round, whereas those with alleles from processing variety E6203 are elongated (sometimes referred to as blocky or square tomatoes). Fine mapping was undertaken to determine whether the effect is due to a single gene or several tightly linked genes. RAPD and RFLP linkage analysis, and substitution mapping of nearly isogenic lines (NILs) segregating for the 22.8 cM-TG176-CT92 interval at the top of chromosome 8 in tomato were used for high-resolution mapping. For the 1212 gametes screened in F2 and F3 families, it was determined that fs8.1 maps as a single locus near the centromere of chromosome 8. A comparative developmental study of fs8.1 NILs revealed that fs8.1 alleles exert their effects on fruit shape early in carpel development at least 6 days before anthesis. Field evaluations of the NILs indicate that fs8.1 affects not only fruit shape, fruit length, and fruit weight but also the number of flowers and fruits per inflorescence, and the harvest index. The date of first flower and fruit diameter were not significantly affected. Received: 19 July 1999 / Accepted: 16 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号