首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ATF1 gene, which encodes alcohol acetyltransferase (AATase), was cloned from Saccharomyces cerevisiae and brewery lager yeast (Saccharomyces uvarum). The nucleotide sequence of the ATF1 gene isolated from S. cerevisiae was determined. The structural gene consists of a 1,575-bp open reading frame that encodes 525 amino acids with a calculated molecular weight of 61,059. Although the yeast AATase is considered a membrane-bound enzyme, the results of a hydrophobicity analysis suggested that this gene product does not have a membrane-spanning region that is significantly hydrophobic. A Southern analysis of the yeast genomes in which the ATF1 gene was used as a probe revealed that S. cerevisiae has one ATF1 gene, while brewery lager yeast has one ATF1 gene and another, homologous gene (Lg-ATF1). Transformants carrying multiple copies of the ATF1 gene or the Lg-ATF1 gene exhibited high AATase activity in static cultures and produced greater concentrations of acetate esters than the control.  相似文献   

2.
It has been reported that the level of d-biotin in the growth medium of Lactobacillus plantarum regulates the synthesis of apoacetyl-coenzyme A (CoA) carboxylase; high levels cause repression, and deficient levels effect derepression. In this study, evidence has been obtained which suggests that coenzyme repression by biotin is an indirect effect; i.e., biotin regulates the synthesis of unsaturated fatty acids which are the true repressors of the acetyl-CoA carboxylase. This was observed in an experiment in which long-chain unsaturated fatty acids were added to media containing deficient, sufficient, or excess levels of d-biotin. In every case, independently of the biotin concentration for growth, the unsaturated fatty acids caused a severe repression of the carboxylase. Saturated fatty acids were without effect. The level of oleic acid required to give maximal repression was 50 mug/ml. The free fatty acids had no adverse effect on the activity of the cell-free extracts nor on the permeation of d-biotin into the cell. Saturated and unsaturated fatty acids decreased the rate of holocarboxylase formation from d-biotin and the apoacetyl-CoA carboxylase in the extracts. It is concluded that there are at least three mechanisms that control the acetyl-CoA carboxylase in this organism: (i) indirect coenzyme repression by d-biotin, (ii) repression by unsaturated fatty acids, and (iii) regulation of the activity of the holocarboxylase synthetase by both saturated and unsaturated fatty acids.  相似文献   

3.
The ATF2 gene, which encodes alcohol acetyltransferase II (AATase II), was cloned from Saccharomyces cerevisiae Kyokai No. 7 (sake yeast). The ATF2 gene coded for a protein of 535 amino acid residues with a calculated molecular mass of 61,909 daltons. The deduced amino acid sequences of the ATF2 showed 36.9% similarity with that of ATF1, which encodes AATase I. The hydrophobicity profiles for the Atf2 protein and Atf1 protein were similar. A transformant carrying multiple copies of the ATF2 gene had 2.5-fold greater AATase activity than the control, and this activity was not significantly inhibited by linoleic acid. A Southern analysis of the yeast genomes in which the ATF2 gene was used as a probe showed that S. cerevisiae and brewery lager yeast have one ATF2 gene, while S. bayanus has no similar gene.  相似文献   

4.
5.
6.
A chemostat culture technique has been developed for the growth of an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae. Any chosen steady-state cellular unsaturated fatty acid level between 75 and 15% of the total fatty acids could be established and maintained. In all cultures the steady-state glucose concentrations were maintained at levels below that which induces catabolite repression.The efficiency of oxidative phosphorylation as determined from the molar growth yield decreased as the cellular unsaturated fatty acid composition was lowered. The number of moles of ATP produced by oxidative phosphorylation per mole of glucose utilized was 7.2, 4.8, 0.7, and 0.4 for cells in which 75, 50, 44, and 34%, respectively, of the total fatty acids were unsaturated.The lesion in oxidative phosphorylation was a direct result of lowering the membrane unsaturated fatty acid composition as the respiratory activities and cytochrome content of cells and mitochondria were unaffected by a decrease in the cellular unsaturated fatty acid level from the wild-type value of about 75% down to about 34%.In cells which contained lipids with 22–28% unsaturated fatty acids, cyanide-sensitive respiration was absent, and the levels of all mitochondrial cytochromes were less than 10% of normal. The reduction in the levels of cytochromes aa3 and b appeared to be a consequence of a loss of mitochondrial protein synthetic activity in such cells. The level of cytochrome c was also greatly decreased, indicating that the cellular unsaturated fatty acid composition was affecting either the synthesis in the cytoplasm of mitochondrial proteins or the assembly of these proteins in the mitochondria.  相似文献   

7.
8.
Abnormal lipid metabolism may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH). ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol and phospholipids from cells to HDL apolipoproteins. We previously reported that unsaturated fatty acids destabilise ABCA1 in murine macrophages and ABCA1-transfected baby hamster kidney cells by increasing its protein degradation. Here, we examined the correlation between ABCA1 and hepatic lipids. In HepG2 cells, unsaturated but not saturated fatty acids suppressed ABCA1 protein levels by promoting its protein degradation. Over-expression of ABCA1 resulted in a decrease of cellular fatty acids and triglycerides, while repression by ABCA1 siRNA increased both cellular fatty acids and triglycerides. Rats with NASH also showed lower ABCA1 protein levels in liver cells, compared with that of the normal rats. These data indicate that steatosis is associated with a decrease in ABCA1 protein expression leading to an increase in lipid storage in hepatocytes. And it further suggests that this effect could be due to an excess of unsaturated fatty acids.  相似文献   

9.
Pseudomonas aeruginosa is capable of moving by swimming, swarming, and twitching motilities. In this study, we investigated the effects of fatty acids on Pseudomonas aeruginosa PAO1 motilities. A branched-chain fatty acid (BCFA)--12-methyltetradecanoic acid (anteiso-C15:0)--has slightly repressed flagella-driven swimming motility and completely inhibited a more complex type of surface motility, i.e. swarming, at a concentration of 10 microg mL(-1). In contrast, anteiso-C15:0 exhibited no effect on pili-mediated twitching motility. Other BCFAs and unsaturated fatty acids tested in this study showed similar inhibitory effects on swarming motility, although the level of inhibition differed between these fatty acids. These fatty acids caused no significant growth inhibition in liquid cultures. Straight-chain saturated fatty acids such as palmitic acid were less effective in swarming inhibition. The wetness of the PAO1 colony was significantly reduced by the addition of anteiso-C15:0; however, the production of rhamnolipids as a surface-active agent was not affected by the fatty acid. In addition to motility repression, anteiso-C15:0 caused 31% repression of biofilm formation by PAO1, suggesting that BCFA could affect the multiple cellular activities of Pseudomonas aeruginosa.  相似文献   

10.
11.
12.
13.
Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl‐CoA with an alcohol by alcohol‐O‐acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short‐ and medium‐chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf‐S.l). Atf1‐S.l exhibited broad specificity towards acyl‐CoAs with chain length from C4 to C10 and was specific towards 1‐pentanol. The AATase screen also revealed new acyl‐CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf‐C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester‐based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels.  相似文献   

14.
Fatty acids are generally considered as agonists for peroxisome proliferator-activated receptors (PPARs). Fatty acids have been shown to bind to and transactivate PPARs; it is not known whether fatty acids act as generalized agonists for PPARs in different cell types, and thus, stimulate the expression of PPAR-regulated target genes. Here, we investigated the potency of unsaturated fatty acids on transactivation of PPRE, DNA-binding activity of PPARs, and the expression of a PPAR-regulated gene product, CD36. Docosahexaenoic acid (DHA) suppressed the basal and PPAR agonist-induced transactivation of PPRE, and DNA binding of PPARs in colon tumor cells (HCT116). The suppression of PPAR transactivation by DHA leads to reduced expression of CD36 in HCT116 cells and human monocytic cells (THP-1) as determined by promoter reporter gene assay and flow cytometric analysis. Our results demonstrate that DHA and other unsaturated fatty acids act as antagonists instead of agonists for transactivation of PPRE and PPAR-regulated gene expression in the cell lines tested. These results suggest that PPAR-mediated gene expression and cellular responses can be dynamically modulated by different types of dietary fatty acids consumed.  相似文献   

15.
16.
The effect of certain lipids on adenylate cyclase activity [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] from fibroblasts in culture has been investigated. The unsaturated fatty acids, as well as lysolecithin, were found to act as potent inhibitors of fibroblast adenylate cyclase activity. Increasing the degree of unsaturation increases the extent of inhibition noted at a given fatty acid concentration. The inhibitory effect of the unsaturated fatty acids or lysolecithin is not selective for a specific function of the adenylate cyclase system since basal, and hormone- or fluoride-stimulated cyclase activities are inhibited to the same extent. The fatty acid-inactivated state of fibroblast adenylate cyclase is not readily reversed for enzyme activity is not restored when arachidonate-treated membranes are washed with Tris buffer containing 10 mm EDTA, 0.15 mm albumin, or 0.15 m KCl. Previous studies have shown that the adenylate cyclase system from Moloney sarcoma virus-transformed NRK (MNRK) cells is not stimulated by the addition of GTP or hormones. Of interest is the present finding that the addition of unsaturated fatty acids, or lysolecithin, over a narrow concentration range (0.1 – 0.2 mm) leads to partial restoration of GTP activation of MNRK cyclase activity. Hormonal responsiveness to l-epinephrine or prostaglandin E1 is not restored to the MNRK enzyme with fatty acid or lysolecithin treatment.  相似文献   

17.
18.
19.
Previously it has been shown that the levels of xanthine dehydrogenase in chick liver can be increased by feeding high-protein diets, adenine, and allopurinol (a xanthine dehydrogenase inhibitor). Also, it has been shown that starvation increases the level of xanthine dehydrogenase in chick liver and that unsaturated fatty acids in the diet suppress the levels of xanthine dehydrogenase in the liver. Results reported here show that starvation and high-protein diets enhance the levels of purine nucleoside phosphorylase and that unsaturated fatty acids suppress the level of this enzyme. In contrast with xanthine dehydrogenase, adenine and allopurinol have no effect on purine nucleoside phosphorylase levels. These results suggest that dietary protein and unsaturated fatty acids regulate more than one enzyme involved in the production of uric acid.Levels of xanthine dehydrogenase in the pancreas can be increased by feeding and decreased by starvation or feeding unsaturated fatty acids. None of these procedures has any effect on the level of pancreatic purine nucleoside phosphorylase.  相似文献   

20.
beta-Ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, also called acetoacetyl-ACP synthase) encoded by the fabH gene is thought to catalyze the first elongation reaction (Claisen condensation) of type II fatty acid synthesis in bacteria and plant plastids. However, direct in vivo evidence that KAS III catalyzes an essential reaction is lacking, because no mutant organism deficient in this activity has been isolated. We report the first bacterial strain lacking KAS III, a fabH mutant constructed in the Gram-positive bacterium Lactococcus lactis subspecies lactis IL1403. The mutant strain carries an in-frame deletion of the KAS III active site region and was isolated by gene replacement using a medium supplemented with a source of saturated and unsaturated long-chain fatty acids. The mutant strain is devoid of KAS III activity and fails to grow in the absence of supplementation with exogenous long-chain fatty acids demonstrating that KAS III plays an essential role in cellular metabolism. However, the L. lactis fabH deletion mutant requires only long-chain unsaturated fatty acids for growth, a source of long-chain saturated fatty acids is not required. Because both saturated and unsaturated fatty acids are required for growth when fatty acid synthesis is blocked by biotin starvation (which prevents the synthesis of malonyl-CoA), another pathway for saturated fatty acid synthesis must remain in the fabH deletion strain. Indeed, incorporation of [1-14C]acetate into fatty acids in vivo showed that the fabH mutant retained about 10% of the fatty acid synthetic ability of the wild-type strain and that this residual synthetic capacity was preferentially diverted to the saturated branch of the pathway. Moreover, mass spectrometry showed that the fabH mutant retained low levels of palmitic acid upon fatty acid starvation. Derivatives of the fabH deletion mutant strain were isolated that were octanoic acid auxotrophs consistent with biochemical studies indicating that the major role of FabH is production of short-chain fatty acid primers. We also confirmed the essentiality of FabH in Escherichia coli by use of a plasmid-based gene insertion/deletion system. Together these results provide the first genetic evidence demonstrating that FabH conducts the major condensation reaction in the initiation of type II fatty acid biosynthesis in both Gram-positive and Gram-negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号