首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Initiation of subsynaptic sarcolemmal specialization and expression of different molecular forms of AChE were studied in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat under different experimental conditions in order to understand better the interplay of neural influences with intrinsic regulatory mechanisms of muscle cells. 2. Former junctional sarcolemma still accumulated AChE and continued to differentiate morphologically for at least 3 weeks after early postnatal denervation of EDL and SOL muscles. In noninnervated regenerating muscles, postsynaptic-like sarcolemmal specializations with AChE appeared (a) in the former junctional region, possibly induced by a substance in the former junctional basal lamina, and (b) in circumscribed areas along the whole length of myotubes. Therefore, the muscle cells seem to be able to produce a postsynaptic organization guiding substance, located in the basal lamina. The nerve may enhance the production or accumulation of this substance at the site of the future motor end plate. 3. Significant differences in the patterns of AChE molecular forms in EDL and SOL muscles arise between day 4 and day 10 after birth. The developmental process of downregulation of the asymmetric AChE forms, eliminating them extrajunctionally in the EDL, is less efficient in the SOL. The presence of these AChE forms in the extrajunctional regions of the SOL correlates with the ability to accumulate AChE in myotendinous junctions. The typical distribution of the asymmetric AChE forms in the EDL and SOL is maintained for at least 3 weeks after muscle denervation. 4. Different patterns of AChE molecular forms were observed in noninnervated EDL and SOL muscles regenerating in situ. In innervated regenerates, patterns of AChE molecular forms typical for mature muscles were instituted during the first week after reinnervation. 5. These results are consistent with the hypothesis that intrinsic differences between slow and fast muscle fibers, concerning the response of their AChE regulating mechanism to neural influences, may contribute to different AChE expression in fast and slow muscles, in addition to the influence of different stimulation patterns.  相似文献   

2.
Acetylcholinesterase (AChE)-rich cytoplasmic granules in the developing myofibers increased remarkably until the establishment of neuromuscular junctions and thereafter decreased rapidly, whereas junctional AChE activities continued to increase (K. Wake, 1976, Cell Tissue Res. 173, 383–400). In the present paper, during the developmental course of the chick embryo, the temporal and regional gradients in differentiation of skeletal muscles at various sites were examined with special reference to the fluctuation of intracellular AChE activity. AChE-rich granules in each muscle throughout the whole body of chick embryos were observed. Since the distribution pattern of these granules changed regularly in the course of the muscle fiber development, advances of muscle differentiation in various sites of the body were compared. (1) The process of muscle development is more advanced in the trunk muscles than in the limb muscles. (2) The dorsal trunk muscles differentiate one day earlier than the ventral ones. (3) Within the same limb, proximal muscles differentiate approximately 24 hr ahead of distal ones. (4) The development of posterior limb muscles advances faster than that of anterior limb muscles. (5) Within the thigh muscles, the flexor muscles tend to differentiate earlier than the extensor muscles.  相似文献   

3.
Filamin C is an actin-crosslinking protein that is specifically expressed in cardiac and skeletal muscles. Although mutations in the filamin C gene cause human myopathy with cardiac involvement, the function of filamin C in vivo is not yet fully understood. Here we report a medaka mutant, zacro (zac), that displayed an enlarged heart, caused by rupture of the myocardiac wall, and progressive skeletal muscle degeneration in late embryonic stages. We identified zac to be a homozygous nonsense mutation in the filamin C (flnc) gene. The medaka filamin C protein was found to be localized at myotendinous junctions, sarcolemma, and Z-disks in skeletal muscle, and at intercalated disks in the heart. zac embryos showed prominent myofibrillar degeneration at myotendinous junctions, detachment of myofibrils from sarcolemma and intercalated disks, and focal Z-disk destruction. Importantly, the expression of γ-actin, which we observed to have a strong subcellular localization at myotendinous junctions, was specifically reduced in zac mutant myotomes. Inhibition of muscle contraction by anesthesia alleviated muscle degeneration in the zac mutant. These results suggest that filamin C plays an indispensable role in the maintenance of the structural integrity of cardiac and skeletal muscles for support against mechanical stress.  相似文献   

4.
Desmin, the main component of intermediate filaments (IFs) in mature skeletal muscle, forms an interlinking scaffold around myofibrils with connections to the sarcolemma and the nuclear membrane. Desmin is enriched in neuromuscular and myotendinous junctions. Mice lacking the desmin gene develop normally and reproduce. However, postnatally they develop a cardiomyopathy and a dystrophy in highly used muscles. We have investigated whether and how neuromuscular and myotendinous junctions are affected and whether nestin compensates for the lack of desmin in the knock-out (K/O) mice. We show that neither neuromuscular nor myotendinous junctions were markedly affected in the desmin K/O mice. In neuromuscular junctions nestin was present between the postjunctional folds and the subneural nuclei and between the nucleus and the myofibrillar cytoskeleton. In myotendinous junctions nestin was present between myofibrils at the Z-disc level and in longitudinal strands close to and at the junction. Nestin expression at these specialized sites, as well as during myogenesis and myofibrillogenesis, is independent of the presence of desmin. In desmin K/O mice nestin was also found in regenerating myofibers. The presence of nestin at neuromuscular and myotendinous junctions might provide enough strength for preservation and organization of the junctional areas, although desmin is lacking.  相似文献   

5.
Summary The intramuscular nerves and myoneural junctions in the rat rectus superior, medialis and inferior muscles from 10 hours to about 10 days after section of the trigeminal and oculomotor nerves were studied with the electron microscope. Two different kinds of myoneural junctions are to be observed; one type derives from myelinated nerves and is similar to the ordinary myoneural junctions (motor end plates) of other striated skeletal muscles, while the other type derives from unmyelinated nerves, is smaller in size and has many myoneural synapses distributed along a single extrafusal muscle fibre.Section of the trigeminal nerve caused no changes in the myoneural synapses. After section of the oculomotor nerve degenerative changes occur in both the myelinated and unmyelinated nerves and in both types of myoneural junctions. In the axon terminals of both the myelinated and unmyelinated nerves the earliest changes are to be observed 10 to 15 hours after section of the nerve. First, swelling of the axoplasm, fragmentation of microtubules and microfilaments and swelling of mitochondria takes place, somewhat later agglutination of the axonal vesicles and mitochondria. The axon terminals are separated from the postsynaptic muscle membrane by hypertrophied teloglial cells about 24 hours after section of the nerve. The debris of the axon terminals is usually digested by the teloglial cells within 42 to 48 hours in both types of myoneural junction.Changes in the postsynaptic membrane are observed in the myoneural junctions of the unmyelinated nerves as disappearance of the already earlier irregular infoldings, whereas no changes take place in the infoldings of the motor end plates. The postsynaptic sarcoplasm and its ribosomal content increase somewhat.The earliest changes occur along unmyelinated axons 10 to 15 hours and along myelinated axons 15 to 24 hours after nerve section. The unmyelinated axons are usually totally digested within 48 hours, whereas the myelinated axons took between 48 hours and 4 days to disappear. The degeneration, fragmentation and digestion of the myelin sheath begin between 24 and 42 hours and still continues 10 days after the operation.The results demonstrate that in the three muscles studied structures underlying the physiologically well known double innervation of the extraoccular muscles are all part of the oculomotor system.We are grateful to Professor Antti Telkkä, M. D. Head of the Electron Microscope Laboratory, University of Helsinki, for permission to use the facilities of the laboratory.  相似文献   

6.
7.
Summary The alary muscles of Locusta migratoria adults make up the major tissue of the dorsal diaphragm which separates pericardial and perivisceral sinuses in the abdomen. The alary muscles are striated with a sarcomere at rest measuring about 9 m. The Z-line has a staggered-beaded arrangement with A-bands and I-bands readily discernable. Thick myofilaments are surrounded by 10 or more thin filaments. The sarcoplasm has few mitochondria near the area of the Z-line, dyads are present and sarcoplasmic reticulum is poorly developed. Axons which innervate the alary muscle are either contained within invaginated folds of the sarcolemma of the muscle cells or the muscle cells send finger-like projections to envelop the axons. The synaptic terminals contain synaptic vesicles between 40 and 45 nm in diameter and a few electron-dense granules near or less than 170 nm in diameter. Away from synaptic terminals the axon profiles show few or no granules. The axons are accompanied everywhere by well-developed glial cells. This then is not typical neurosecretomotor innervation, however, the presence of electron-dense granules suggests the possibility of peptidergic neurotransmission.  相似文献   

8.
We describe a combined stain for simultaneous demonstration of the preterminal axons and cholinesterase activity at myoneural junctions of mammalian muscles. This technique employs acetylthiocholine iodide as the substrate for cholinesterase activity and silver nitrate impregnation of preterminal axons. The procedure is rapid, simple and Uses fresh muscles. Intramuscular nerves, preterminal axons and myoneural junctions are stained simultaneously brown or black with minimal background staining of connective tissue and muscle fibers.  相似文献   

9.
Summary Colchicine (0.1 M) or vinblastine (0.01 M) was locally applied on the sciatic nerves of newborn rats. Both colchicine and vinblastine caused reversible disappearance of axonal neurotubules and appearance of increased amounts of neurofilaments at the site of application. Subsequent morphogenesis of myoneural junctions in the tibialis anterior muscle was studied after histochemical demonstration of acetylcholinesterase (AChE; E.C. 3.1.1.7) and non-specific cholinesterase (Ns. ChE; E.C. 3.1.1.8) activity in the myoneural area.Development of the postsynaptic muscle plasma membrane of the myoneural junction was arrested in the ipsilateral, but not in the contralateral control side, for a period of about three weeks following treatment with the test substances. After this delay the myoneural morphogenesis continued normally and neurotubules were seen in the axoplasm.Since disruption of neurotubules is likely to cause blockage of the intratubular axoplasmic transport system, it seems possible that the neurotrophic influence responsible for the development of the postsynaptic muscle membrane is mediated through a secretory product transported along axons intratubularly to the nerve endings.  相似文献   

10.
We describe a combined stain for simultaneous demonstration of the preterminal axons and cholinesterase activity at myoneural junctions of mammalian muscles. This technique employs acetylthiocholine iodide as the substrate for cholinesterase activity and silver nitrate impregnation of preterminal axons. The procedure is rapid, simple and Uses fresh muscles. Intramuscular nerves, preterminal axons and myoneural junctions are stained simultaneously brown or black with minimal background staining of connective tissue and muscle fibers.  相似文献   

11.
Using immunocytochemical methods we have studied the distribution of vinculin in the anterior and posterior latissimus dorsi skeletal (ALD and PLD, respectively) muscles of the adult chicken. The ALD muscle is made up of both tonic (85%) and twitch (15%) myofibers, and the PLD muscle is made up entirely of twitch myofibers. In indirect immunofluorescence, antivinculin antibodies stained specific regions adjacent to the sarcolemma of the ALD and PLD muscles. In the central and myotendinous regions of the ALD, staining of the tonic fibers was intense all around the fiber periphery. Staining of the twitch fibers of both ALD and PLD muscles was intense only at neuromuscular junctions and myotendinous regions. Electron microscopy revealed subsarcolemmal, electron-dense plaques associated with the membrane only in those regions where vinculin was localized by immunofluorescence. Using antivinculin antibody and protein A conjugated to colloidal gold, we found that the electron-dense subsarcolemmal densities in the tonic fibers of the ALD contain vinculin; no other structures were labeled. The basal lamina overlying the densities appeared to be connected to the sarcolemma by fine, filamentous structures, more enriched at these sites than elsewhere along the muscle fiber. Increased amounts of endomysial connective tissue were often found just outside the basal lamina near the densities. In tonic ALD muscle fibers, the subsarcolemmal densities were present preferentially over the I-bands. In partially contracted ALD muscle, subsarcolemmal densities adjacent to the Z-disk appeared to be connected to that structure by short filaments. We propose that in the ALD muscle, through their association with the extracellular matrix, the densities stabilize the muscle membrane and perhaps assist in force transmission.  相似文献   

12.
Mice lacking the gene encoding for the intermediate filament protein desmin have a surprisingly normal myofibrillar organization in skeletal muscle fibers, although myopathy develops in highly used muscles. In the present study we examined how synemin, paranemin, and plectin, three key cytoskeletal proteins related to desmin, are organized in normal and desmin knock-out (K/O) mice. We show that in wild-type mice, synemin, paranemin, and plectin were colocalized with desmin in Z-disc-associated striations and at the sarcolemma. All three proteins were also present at the myotendinous junctions and in the postsynaptic area of motor endplates. In the desmin K/O mice the distribution of plectin was unaffected, whereas synemin and paranemin were partly affected. The Z-disc-associated striations were in general no longer present in between the myofibrils. In contrast, at the myotendinous and neuromuscular junctions synemin and paranemin were still present. Our study shows that plectin differs from synemin and paranemin in its binding properties to the myofibrillar Z-discs and that the cytoskeleton in junctional areas is particularly complex in its organization.  相似文献   

13.
Summary Binding sites for three fucose specific lectins, Aleuria aurantia agglutinin (AAA), Lotus tetragonolobus agglutinin (LTA) and Ulex europeus I agglutinin (UEA I), were investigated in sections from normal human and rat muscles, in muscle from patients with Duchenne muscular dystrophy (DMD) and in denervated and devascularized rat muscle. In normal human and rat muscle AAA detected fucosylated glycocompounds in the sarcoplasm, sarcolemma, interfibre connective tissue and vascular structures. In normal human muscle addition of fucose to the AAA incubation medium or treatment of the sections with formaldehyde followed by periodic oxidation before lectin incubation strongly inhibited the staining at all sites other than endothelial cells. In normal rat muscle the same staining procedures strongly inhibited the AAA binding at all sites other than the sarcolemma. Incubation with LTA resulted in a diffuse reaction around the vascular structures in rat muscle, while in human muscle a moderate, homogeneous staining was present in all muscle fibres. Treatment of the sections with formaldehyde and periodic acid before incubation with LTA resulted in strongly labelled muscle capillaries in both human and rat muscle. The only elements in the muscle tissues that were stained with UEA I were human endothelial cells. In denervated and devascularized rat muscle incubation with AAA revealed a novel fucose expression that appeared intracellularly in some necrotic fibres. The AAA-positive fucose residues in the sarcolemma of normal muscle fibres that were resistant to periodic acid oxidation could not be shown by AAA in denervated muscle. In DMD muscle a cryptic sarcolemmal fucose expression could be shown with AAA. It is suggested that both the sarcoplasm and sarcolemma of diseased muscle fibres show altered fucose expression.  相似文献   

14.
The fine structure of the myotendinous junction of the skeletal muscle of lathyritic rats caused by β-aminopropionitrile was investigated. In the junction there are finger-like processes of muscle fibers, in which thin filaments were extended from the last Z lines of myofibrils and attached to the sarcolemma of the processes. By the heavy meromyosin decoration technique, these thin filaments were identified as actin filaments. In the lathyritic muscle, the thin filaments were markedly fewer in number and distributed sparsely in the sarcoplasm.The content of connectin, an elastic protein, which is localized in myofibrils and also in sarcolemma was significantly decreased in the lathyritic muscle. A possible relationship between the changes in the fine structure of the myotendinous junction and in the connectin contents is discussed.  相似文献   

15.
Summary The structure of myoneural junctions in the tibialis anterior and intercostal muscles was studied after histochemical reaction for myoneural acetylcholinesterase (E.C. 3.1.1.7) in human embryos.Myoneural junctions of a primitive form were first seen in the intercostal muscle at the age of 8.6 weeks (crown-rump length of 3.2 cm), and in the tibialis anterior muscle at the age of 10 weeks (4.3 cm). The postsynaptic membrane was devoid of any junctional folds typical of adult synapses up to the age of about 19 weeks. At first small, the junctional folds gradually became deeper and more prominent during the following weeks, and some ramification of the previously coherent postsynaptic area took place. Myoneural morphogenesis was not completed at birth, although well developed postsynaptic Moldings were present.  相似文献   

16.
The locomotor function of the caudal muscle cells of ascidian larvae is identical with that of lower vertebrate somatic striated (skeletal) muscle fibers, but other features, including the presence of transverse myomuscular junctions, an active Golgi apparatus, a single nucleus, and partial innervation, are characteristic of vertebrate myocardial cells. Seven stages in the development of the compound ascidian Distaplia occidentalis were selected for an ultrastructural study of caudal myogenesis. A timetable of development and differentiation was obtained from cultures of isolated embryos in vitro. The myoblasts of the neurulating embryo are yolky, undifferentiated cells. They are arranged in two bands between the epidermis and the notochord in the caudal rudiment and are actively engaged in mitosis. Myoblasts of the caudate embryo continue to divide and rearrange themselves into longitudinal rows so that each cell simultaneously adjoins the epidermis and the notochord. The formation of secretory granules by the Golgi apparatus coincides with the onset of proteid-yolk degradation and the accumulation of glycogen in the ground cytoplasm. Randomly oriented networks of thick and thin myofilaments appear in the peripheral sarcoplasm of the muscle cells of the comma embryo. Bridges interconnect the thick and thin myofilaments (actomyosin bridges) and the thick myofilaments (H-bridges), but no banding patterns are evident. The sarcoplasmic reticulum (SR), derived from evaginations of the nuclear envelope, forms intimate associations (peripheral couplings) with the sarcolemma. Precursory Z-lines are interposed between the networks of myofilaments in the vesiculate embryo, and the nascent myofibrils become predominantly oriented parallel to the long axis of the muscle cell. Muscle cells of the papillate embryo contain a single row of cortical myofibrils. Myofibrils, already spanning the length of the cell, grow only in diameter by the apposition of myofilaments. The formation of transverse myomuscular junctions begins at this stage, but the differentiating junctions are frequently oriented obliquely rather than orthogonally to the primary axes of the myofibrils. With the appearance of H-bands and M-lines, a single perforated sheet of sarcoplasmic reticulum is found centered on the Z-line and embracing the I-band. The sheet of SR establishes peripheral couplings with the sarcolemma. In the prehatching tadpole, a second collar of SR, centered on the M-line and extending laterally to the boundaries with the A-bands, is formed. A single perforated sheet surrounds the myofibril but is discontinuous at the side of the myofibril most distant from the sarcolemma. To produce the intricate architecture of the fully differentiated collar in the swimming tadpole (J. Morph., 138: 349, 1972). the free ends of the sheet must elevate from the surface of the myofibril, recurve, and extend peripherally toward the sarcolemma to establish peripheral couplings. Morphological changes in the nucleus, nucleolus, mitochondria, and Golgi bodies are described, as well as changes in the ground cytoplasmic content of yolk, glycogen, and ribosomes. The volume of the differentiating cells, calculated from the mean cellular dimensions, and analyses of cellular shape are presented, along with schematic diagrams of cells in each stage of caudal myogenesis. In an attempt to quantify the differences observed ultrastructurally, calculations of the cytoplasmic volume occupied by the mqjor classes of organelles are included. Comparison is made with published accounts on differentiating vertebrate somatic striated and cardiac muscles.  相似文献   

17.
There are two main differences regarding acetylcholinesterase (AChE) expression in the extrajunctional regions of fast and slow rat muscles: (1) the activity of AChE catalytic subunits (G1 form) is much higher in fast than in slow muscles, and (2) the activity of the asymmetric forms of AChE (A8 and A12) is quite high extrajunctionally in slow muscles but virtually absent in fast muscles. The latter is due to the absence of the expression of AChE-associated collagen Q (ColQ) in the extrajunctional regions of fast muscle fibers, in contrast to its ample expression in slow muscles. We showed that both differences are caused by different neural activation patterns of fast vs. slow muscle fibers, which determine the respective levels of mRNA of both proteins. Whereas the changes in AChE mRNA levels in fast and slow muscles, as well as the levels of ColQ mRNA levels in slow muscles, observed in response to exposing either slow or fast muscles to different muscle activation patterns, are completely reversible, the extrajunctional suppression of ColQ expression in fast muscle fibers seems to be irreversible. Calcineurin signaling pathway in muscles is activated by high-average sarcoplasmic calcium concentration resulting from tonic low-frequency muscle fiber activation pattern, typical for slow muscle fibers, but is inactive in fast muscle fibers, which are activated by infrequent high-frequency bursts of neural impulses. Application to rats of two inhibitors of calcineurin (tacrolimus-FK506 and cyclosporin A) demonstrated that the mRNA levels of both the AChE catalytic subunit and ColQ in the extrajunctional regions of the soleus muscle are regulated by the calcineurin signaling pathway, but in a reciprocal way. Under the conditions of low calcineurin activity, AChE expression is enhanced and that of ColQ is suppressed, and vice versa. Our results also indicated that different, calcineurin-independent regulatory pathways are responsible for the reduction of AChE expression during muscle denervation, and for maintaining high ColQ expression in the neuromuscular junctions of fast muscle fibers.  相似文献   

18.
Summary The structure of the myoneural junction in the striated muscle of rat embryos and postnatal rats was studied by electron microscopy in order to assess at ultrastructural level the roles of neuronal and muscular elements and the sequence of events resulting in the formation of a functionally mature synaptic organization.From the observations it is concluded that the axon terminals enveloped by Schwann cells contain vesicles prior to apposition of the prospective synaptic membranes. Subsequently, subsarcolemmal thickening of the postsynaptic membrane takes place after the synaptic gap has been formed by disappearance of the teloglial cell from between the synaptic membranes but before the primary synaptic cleft in the strict sense is formed. Secondary synaptic clefts are formed later, when the primary synaptic cleft is regular in width, by local finger-like invaginations of the postsynaptic membrane, which thereafter expand basally, in a plane transverse to the axis of the axon terminal, to resemble flattened flasks. The junction is formed between multinucleated muscle cells and multiple axons, which at first lie side by side and later, when formation of adult-type secondary synaptic clefts is in progress, become separated by folds of the sarcoplasm and the teloglia. In extraocular muscles of adult rats the sarcoplasmic reticulum is closely associated with the postjunctional sarcoplasm.In the light of earlier observations on the development of contractibility after nerve stimulation, cholinesterase histochemistry and muscle fibre physiology, these observations are interpreted to indicate that functional differentiation of the myoneural synapse results from induction by the motor axon and that the association of the sarcoplasmic reticulum with the postjunctional sarcoplasm in adult extraocular muscles is related to modified fibre physiology.The author wishes to thank Prof. Antti Telkkä, M.D., Head of the Electron Microscope Laboratory, University of Helsinki, for placing the electron microscopic facilities at his disposal.  相似文献   

19.
The innervation pattern of skeletal muscles was studied in the normal and regenerating tail of Notophthalmus viridescens. Silver staining for nerve endings and histochemical localization of acetylcholinesterase (AChE) were used for light microscopy. In In normal musculature, AChE positive reactions were localized at the ends of the muscle fibers where they are anchored on connective tissue septa by myotendinous junctions. At this level, silver staining shows nerve terminals forming endplates. During regeneration, positive reactions for AChE appear de novo as dense plates localized at the ends of the newly formed myotubes. The mechanisms involved in the localization of AChE on this surface seem to operate before previous local contacts by nerve terminals. From the ultrastructural data and immunohistochemical results with anti-laminin antibody, these observations suggest that regenerating muscle fibers determine a region of post-synaptic specialization in close relation with the organization of myotendinous regions and basement membrane formation. Nerve-muscle contacts appear at these levels at stage IV (15-20 days after amputation) in the stump and in the rostral part of the regenerate (transition zone). These nerve terminals are provided by the disorganized peripheral nervous system of the injured segment. In the regenerate a similar pattern of AChE reaction can be seen in every myotube, differentiating according to a rostro-caudal gradient. Innervation at the ends of the muscle fibers is in spatiotemporal relation with the exists of the ventral roots from the regenerating nerve cord as the regenerate continues to grow in length.  相似文献   

20.
alpha-Dystrobrevin (DB), a cytoplasmic component of the dystrophin-glycoprotein complex, is found throughout the sarcolemma of muscle cells. Mice lacking alphaDB exhibit muscular dystrophy, defects in maturation of neuromuscular junctions (NMJs) and, as shown here, abnormal myotendinous junctions (MTJs). In normal muscle, alternative splicing produces two main alphaDB isoforms, alphaDB1 and alphaDB2, with common NH2-terminal but distinct COOH-terminal domains. alphaDB1, whose COOH-terminal extension can be tyrosine phosphorylated, is concentrated at the NMJs and MTJs. alphaDB2, which is not tyrosine phosphorylated, is the predominant isoform in extrajunctional regions, and is also present at NMJs and MTJs. Transgenic expression of either isoform in alphaDB-/- mice prevented muscle fiber degeneration; however, only alphaDB1 completely corrected defects at the NMJs (abnormal acetylcholine receptor patterning, rapid turnover, and low density) and MTJs (shortened junctional folds). Site-directed mutagenesis revealed that the effectiveness of alphaDB1 in stabilizing the NMJ depends in part on its ability to serve as a tyrosine kinase substrate. Thus, alphaDB1 phosphorylation may be a key regulatory point for synaptic remodeling. More generally, alphaDB may play multiple roles in muscle by means of differential distribution of isoforms with distinct signaling or structural properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号