首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia coli strain PC09 (DeltaxylB, cAMP-independent CRP (crp*) mutant) expressing an NADPH-dependent xylose reductase from Candida boidinii (CbXR) was previously reported to produce xylitol from xylose while metabolizing glucose [Cirino et al. (2006) Biotechnol Bioeng 95(6): 1167-1176]. This study aims to understand the role of NADPH supply in xylitol yield and the contribution of key central carbon metabolism enzymes toward xylitol production. Studies in which the expression of CbXR or a xylose transporter was increased suggest that enzyme activity and xylose transport are not limiting xylitol production in PC09. A constraints-based stoichiometric metabolic network model was used to understand the roles of central carbon metabolism reactions and xylose transport energetics on the theoretical maximum molar xylitol yield (xylitol produced per glucose consumed), and xylitol yields (Y(RPG)) were measured from resting cell biotransformations with various PC09 derivative strains. For the case of xylose-proton symport, omitting the Zwf (glucose-6-phosphate dehydrogenase) or PntAB (membrane-bound transhydrogenase) reactions or TCA cycle activity from the model reduces the theoretical maximum yield from 9.2 to 8.8, 3.6, and 8.0 mol xylitol (mol glucose)(-1), respectively. Experimentally, deleting pgi (encoding phosphoglucose isomerase) from strain PC09 improves the yield from 3.4 to 4.0 mol xylitol (mol glucose)(-1), while deleting either or both E. coli transhydrogenases (sthA and pntA) has no significant effect on the measured yield. Deleting either zwf or sucC (TCA cycle) significantly reduces the yield from 3.4 to 2.0 and 2.3 mol xylitol (mol glucose)(-1), respectively. Expression of a xylose reductase with relaxed cofactor specificity increases the yield to 4.0. The large discrepancy between theoretical maximum and experimentally determined yield values suggests that biocatalysis is compromised by pathways competing for reducing equivalents and dissipating energy. The metabolic role of transhydrogenases during E. coli biocatalysis has remained largely unspecified. Our results demonstrate the importance of direct NADPH supply by NADP+-utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions, and suggest that the pool of reduced cofactors available for biotransformation is not readily interchangeable via transhydrogenase.  相似文献   

2.
The range of value-added chemicals produced by Escherichia coli from simple sugars has been expanded to include xylitol. This was accomplished by screening the in vivo activity of a number of heterologous xylitol-producing enzymes. Xylose reductases from Candida boidinii (CbXR), Candida tenuis (CtXR), Pichia stipitis (PsXR), and Saccharmoyces cerivisiae (ScXR), and xylitol dehydrogenases from Gluconobacter oxydans (GoXDH) and Pichia stipitis (PsXDH) were all functional in E. coli to varying extents. Replacement of E. coli's native cyclic AMP receptor protein (CRP) with a cyclic AMP-independent mutant (CRP*) facilitated xylose uptake and xylitol production from mixtures of glucose and xylose, with glucose serving as the growth substrate and source of reducing equivalents. Of the enzymes tested, overexpression of NADPH-dependent CbXR produced the highest concentrations of xylitol in shake-flask cultures (approximately 275 mM in LB cultures, approximately 180 mM using minimal medium). Expression of CbXR in strain PC09 (crp*, DeltaxylB) in a 10-L controlled fermentation containing minimal medium resulted in production of approximately 250 mM xylitol (38 g/L), with concomitant utilization of approximately 150 mM glucose. The ratio of moles xylitol produced (from xylose) per mole glucose consumed was improved to > 3.7:1 using metabolically active "resting" cells.  相似文献   

3.
4.
L -Threonine, a kind of essential amino acid, has numerous applications in food, pharmaceutical, and aquaculture industries. Fermentative l -threonine production from glucose has been achieved in Escherichia coli. However, there are still several limiting factors hindering further improvement of l -threonine productivity, such as the conflict between cell growth and production, byproduct accumulation, and insufficient availability of cofactors (adenosine triphosphate, NADH, and NADPH). Here, a metabolic modification strategy of two-stage carbon distribution and cofactor generation was proposed to address the above challenges in E. coli THRD, an l -threonine producing strain. The glycolytic fluxes towards tricarboxylic acid cycle were increased in growth stage through heterologous expression of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and citrate synthase, leading to improved glucose utilization and growth performance. In the production stage, the carbon flux was redirected into l -threonine synthetic pathway via a synthetic genetic circuit. Meanwhile, to sustain the transaminase reaction for l -threonine production, we developed an l -glutamate and NADPH generation system through overexpression of glutamate dehydrogenase, formate dehydrogenase, and pyridine nucleotide transhydrogenase. This strategy not only exhibited 2.02- and 1.21-fold increase in l -threonine production in shake flask and bioreactor fermentation, respectively, but had potential to be applied in the production of many other desired oxaloacetate derivatives, especially those involving cofactor reactions.  相似文献   

5.
3-脱氢莽草酸是芳香族氨基酸合成代谢途径中的一种重要中间产物。除可作为一种高效的抗氧化剂,还可用于合成己二酸、香草醛等一些重要的化工产品,具有重要的应用价值。相关研究证明具有去酪氨酸反馈抑制的3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroFFBR以及转酮醇酶基因tktA可以有效影响3-脱氢莽草酸的过量合成。通过增加aroFFBR和tktA串联过量表达的拷贝数,可使工程菌株在摇瓶发酵条件下3-脱氢莽草酸产量提高2.93倍。通过同源重组无痕基因敲除技术依次敲除出发菌大肠杆菌Escherichia coli AB2834的乳酸、乙酸、乙醇等副产物合成途径中的重要基因ldhA、ackA-pta和adhE,可使工程菌株的3-脱氢莽草酸产量进一步提高,达到了1.83 g/L,是初始出发菌株大肠杆菌E.coli AB2834产量的6.7倍。利用5 L发酵罐进行分批补料发酵,62 h后工程菌株3-脱氢莽草酸产量达到了25.48 g/L。本研究可为构建有应用前景的3-脱氢莽草酸生产菌株提供重要参考。  相似文献   

6.
The production of chemical compounds from renewable resources is an important issue in building a sustainable society. In this study, Escherichia coli was metabolically engineered by introducing T7lac promoter-controlled aroFfbr, pabA, pabB, and pabC genes into the chromosome to overproduce para-aminobenzoic acid (PABA) from glucose. Elevating the copy number of chromosomal PT7lac-pabA-pabB distinctly increased the PABA titer, indicating that elevation of 4-amino-4-deoxychorismic acid synthesis is a significant factor in PABA production. The introduction of a counterpart derived from Corynebacterium efficiens, pabAB (ce), encoding a fused PabA and PabB protein, resulted in a considerable increase in the PABA titer. The introduction of more than two copies of PT7lac-pabAB (ce-mod), a codon-optimized pabAB (ce), into the chromosome of a strain that simultaneously overexpressed aroFfbr and pabC resulted in 5.1?mM PABA from 55.6?mM glucose (yield 9.2%). The generated strain produced 35?mM (4.8?g?L?1) PABA from 167?mM glucose (yield 21.0%) in fed-batch culture.  相似文献   

7.
对氨基苯甲酸是一种重要的有机合成中间体,广泛应用于医药、染料等行业。近年来对氨基苯甲酸作为一种潜在的高强度共聚物单体越来越受到重视。对氨基苯甲酸作为叶酸合成的前体之一,其合成在大肠杆菌体内由叶酸合成途径的pabA、pabB和pabC三个基因负责,催化分支酸合成对氨基苯甲酸。本研究以实验室构建的酪氨酸高产工程菌TYR002作为出发菌株,首先弱化双功能分支酸突变酶/预苯酸脱氢酶TyrA的表达,以减少酪氨酸积累,然后利用3种不同强度的组成型启动子分别调控pabA、pabB和pabC的表达。摇瓶发酵表明不同的组合调控模式下大肠杆菌发酵培养基中的对氨基苯甲酸积累量存在显著差异,最高可获得0.67 g/L的摇瓶发酵产量。进一步通过发酵条件优化和分批补料发酵,在5L发酵罐中获得了6.4g/L的对氨基苯甲酸产量。本研究为改善对氨基苯甲酸生物合成效率提供了重要理论参考。  相似文献   

8.
Microbial production of mevalonate from renewable feedstock is a promising and sustainable approach for the production of value-added chemicals. We describe the metabolic engineering of Escherichia coli to enhance mevalonate production from glucose and cellobiose. First, the mevalonate-producing pathway was introduced into E. coli and the expression of the gene atoB, which encodes the gene for acetoacetyl-CoA synthetase, was increased. Then, the deletion of the pgi gene, which encodes phosphoglucose isomerase, increased the NADPH/NADP+ ratio in the cells but did not improve mevalonate production. Alternatively, to reduce flux toward the tricarboxylic acid cycle, gltA, which encodes citrate synthetase, was disrupted. The resultant strain, MGΔgltA-MV, increased levels of intracellular acetyl-CoA up to sevenfold higher than the wild-type strain. This strain produced 8.0 g/L of mevalonate from 20 g/L of glucose. We also engineered the sugar supply by displaying β-glucosidase (BGL) on the cell surface. When cellobiose was used as carbon source, the strain lacking gnd displaying BGL efficiently consumed cellobiose and produced mevalonate at 5.7 g/L. The yield of mevalonate was 0.25 g/g glucose (1 g of cellobiose corresponds to 1.1 g of glucose). These results demonstrate the feasibility of producing mevalonate from cellobiose or cellooligosaccharides using an engineered E. coli strain.  相似文献   

9.
10.
Squalene is a lipophilic and non-volatile triterpene with many industrial applications for food, pharmaceuticals, and cosmetics. Metabolic engineering focused on optimization of the production pathway suffer from little success in improving titers because of a limited space of the cell membrane accommodating the lipophilic product. Extension of cell membrane would be a promising approach to overcome the storage limitation for successful production of squalene. In this study, Escherichia coli was engineered for squalene production by overexpression of some membrane proteins. The highest production of 612 mg/L was observed in the engineered E. coli with overexpression of Tsr, a serine chemoreceptor protein, which induced invagination of inner membrane to form multilayered structure. It was also observed an increase in unsaturated fatty acid in membrane lipids composition, suggesting cellular response to maintain membrane fluidity against squalene accumulation in the engineered strain. This study potentiates the capability of E. coli for squalene production and provides an effective strategy for the enhanced production of such compounds.  相似文献   

11.
Fumaric acid is a naturally occurring organic acid that is an intermediate of the tricarboxylic acid cycle. Fungal species belonging to Rhizopus have traditionally been employed for the production of fumaric acid. In this study, Escherichia coli was metabolically engineered for the production of fumaric acid under aerobic condition. For the aerobic production of fumaric acid, the iclR gene was deleted to redirect the carbon flux through the glyoxylate shunt. In addition, the fumA, fumB, and fumC genes were also deleted to enhance fumaric acid formation. The resulting strain was able to produce 1.45 g/L of fumaric acid from 15 g/L of glucose in flask culture. Based on in silico flux response analysis, this base strain was further engineered by plasmid‐based overexpression of the native ppc gene, encoding phosphoenolpyruvate carboxylase (PPC), from the strong tac promoter, which resulted in the production of 4.09 g/L of fumaric acid. Additionally, the arcA and ptsG genes were deleted to reinforce the oxidative TCA cycle flux, and the aspA gene was deleted to block the conversion of fumaric acid into L ‐aspartic acid. Since it is desirable to avoid the use of inducer, the lacI gene was also deleted. To increase glucose uptake rate and fumaric acid productivity, the native promoter of the galP gene was replaced with the strong trc promoter. Fed‐batch culture of the final strain CWF812 allowed production of 28.2 g/L fumaric acid in 63 h with the overall yield and productivity of 0.389 g fumaric acid/g glucose and 0.448 g/L/h, respectively. This study demonstrates the possibility for the efficient production of fumaric acid by metabolically engineered E. coli. Biotechnol. Bioeng. 2013; 110: 2025–2034. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
代谢工程大肠杆菌利用甘油高效合成L-乳酸   总被引:2,自引:0,他引:2  
以甘油为碳源高效合成L-乳酸有助于推进油脂水解产业和生物可降解材料制造业的共同发展。为此,首先分别从凝结芽胞杆菌Bacillus coagulans CICIM B1821和大肠杆菌Escherichia coli CICIM B0013中克隆了L-乳酸脱氢酶基因BcoaLDH和D-乳酸脱氢酶 (LdhA) 的启动子片段PldhA。将两条DNA片段连接组成了表达盒PldhA-BcoaLDH。然后将上述表达盒通过同源重组删除FMN为辅酶的L-乳酸脱氢酶编码基因lldD的同时克隆入ldhA基因缺失菌株E. coli CICIM B0013-080C (ack-pta pps pflB dld poxB adhE frdA ldhA)的染色体上,获得了L-乳酸高产菌株E. coli CICIM B0013-090B (B0013-080C,lldD::PldhA-BcoaLDH)。考察了菌株CICIM B0013-090B不同培养温度下代谢利用甘油和合成L-乳酸的特征后,建立并优化了一种新型L-乳酸变温发酵工艺。在7 L发酵罐上,发酵27 h,积累L-乳酸132.4 g/L,产酸强度4.90 g/(L·h),甘油到L-乳酸的得率为93.7%,L-乳酸的光学纯度达到99.95%。  相似文献   

13.
D-甘露醇广泛应用于食品、制药、化学品工业等领域。从野生型大肠杆菌出发,将来自假肠膜明串珠菌Leuconostoc pseudomesenteroides ATCC 12291菌株的甘露醇脱氢酶与果糖转运蛋白编码基因整合到大肠杆菌ATCC 8739的染色体中,并失活其他的发酵途径 (丙酮酸甲酸裂解酶、乳酸脱氢酶、富马酸还原酶、乙醇脱氢酶、甲基乙二醛合成酶和丙酮酸氧化酶) ,构建了一株遗传稳定的D-甘露醇生产菌株。使用无机盐培养基和葡萄糖果糖作为混合碳源,厌氧发酵6 d,D-甘露醇产量达1.2 mmol/L。基于细胞生长和D-甘露醇合成的偶联,进一步通过代谢进化技术提高细胞合成D-甘露醇的生产能力。经过80代的驯化,D-甘露醇产量提高了2.6倍,甘露醇脱氢酶的活性提高了2.8倍。构建获得的遗传稳定的工程菌能直接发酵糖生产D-甘露醇,不需添加抗生素、诱导剂和甲酸,在工业化生产时有一定优势。  相似文献   

14.
The global market of butanol is increasing due to its growing applications as solvent, flavoring agent, and chemical precursor of several other compounds. Recently, the superior properties of n-butanol as a biofuel over ethanol have stimulated even more interest. (Bio)butanol is natively produced together with ethanol and acetone by Clostridium species through acetone-butanol-ethanol fermentation, at noncompetitive, low titers compared to petrochemical production. Different butanol production pathways have been expressed in Escherichia coli, a more accessible host compared to Clostridium species, to improve butanol titers and rates. The bioproduction of butanol is here reviewed from a historical and theoretical perspective. All tested rational metabolic engineering strategies in E. coli to increase butanol titers are reviewed: manipulation of central carbon metabolism, elimination of competing pathways, cofactor balancing, development of new pathways, expression of homologous enzymes, consumption of different substrates, and molecular biology strategies. The progress in the field of metabolic modeling and pathway generation algorithms and their potential application to butanol production are also summarized here. The main goals are to gather all the strategies, evaluate the respective progress obtained, identify, and exploit the outstanding challenges.  相似文献   

15.
L -Fucose (6-deoxy-L -galactose) is a major constituent of glycans and glycolipids in mammals. Fucosylation of glycans can confer unique functional properties and may be an economical way to manufacture L -fucose. Research can extract L -fucose directly from brown algae, or by enzymatic hydrolysis of L -fucose-rich microbial exopolysaccharides. However, these L -fucose production methods are not economical or scalable for various applications. We engineered an Escherichia coli strain to produce L -fucose. Specifically, we modified the strain genome to eliminate endogenous L -fucose and lactose metabolism, produce 2′-fucosyllactose (2′-FL), and to liberate L -fucose from 2′-FL. This E. coli strain produced 16.7 g/L of L -fucose with productivity of 0.1 g·L−1·h−1 in a fed-batch fermentation. This study presents an efficient one-pot biosynthesis strategy to produce a monomeric form of L -fucose by microbial fermentation, making large-scale industrial production of L -fucose feasible.  相似文献   

16.
Anthocyanins are red, purple, or blue plant water-soluble pigments. In the past two decades, anthocyanins have received extensive studies for their anti-oxidative, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, and cardioprotective properties. In the present study, anthocyanin biosynthetic enzymes from different plant species were characterized and employed for pathway construction leading from inexpensive precursors such as flavanones and flavan-3-ols to anthocyanins in Escherichia coli. The recombinant E. coli cells successfully achieved milligram level production of two anthocyanins, pelargonidin 3-O-glucoside (0.98 mg/L) and cyanidin 3-O-gluside (2.07 mg/L) from their respective flavanone precursors naringenin and eriodictyol. Cyanidin 3-O-glucoside was produced at even higher yields (16.1 mg/L) from its flavan-3-ol, (+)-catechin precursor. Further studies demonstrated that availability of the glucosyl donor, UDP-glucose, was the key metabolic limitation, while product instability at normal pH was also identified as a barrier for production improvement. Therefore, various optimization strategies were employed for enhancing the homogenous synthesis of UDP-glucose in the host cells while at the same time stabilizing the final anthocyanin product. Such optimizations included culture medium pH adjustment, the creation of fusion proteins and the rational manipulation of E. coli metabolic network for improving the intracellular UDP-glucose metabolic pool. As a result, production of pelargonidin 3-O-glucoside at 78.9 mg/L and cyanidin 3-O-glucoside at 70.7 mg/L was achieved from their precursor flavan-3-ols without supplementation with extracellular UDP-glucose. These results demonstrate the efficient production of the core anthocyanins for the first time and open the possibility for their commercialization for pharmaceutical and nutraceutical applications.  相似文献   

17.
A pfl ldhA double mutant Escherichia coli strain NZN111 was used to produce succinic acid by overexpressing the E. coli malic enzyme. Escherichia coli strain NZN111 harboring pTrcML produced 6 and 8 g/L of succinic acid from 20 g/L of glucose in flask culture at 37 degrees C and 30 degrees C, respectively. When NZN111(pTrcML) was cultured at 30 degrees C with intermittent glucose feeding the final succinic acid concentration obtained was 9.5 g/L and the ratio of succinic acid to acetic acid was 13:1. This system could not be analyzed by conventional metabolic flux analysis techniques, since some pyruvate and succinic acid were accumulated intracellularly. Therefore, a new flux analysis method was proposed by introducing intracellular pyruvate and succinic acid pools. By this new method the concentrations of intracellular metabolites were successfully predicted and the differences between the measured and calculated reaction rates could be considerably reduced.  相似文献   

18.
对实验室构建的产琥珀酸大肠杆菌工程菌株(E.coliQZ1111)进行发酵工艺条件研究。以AM1低盐培养基为基础,研究不同C、N源及其质量浓度,培养基初始pH和发酵温度等因素对琥珀酸的影响,并在5L发酵罐中进行了补料-分批发酵实验。优化后的发酵条件为葡萄糖20g/L,玉米浆10g/L,pH6.4,发酵温度37℃。在5L发酵罐中培养,琥珀酸产量达到47.9g/L。  相似文献   

19.
Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, we constructed various recombinant E. coli HB101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic and (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selected based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the Hindlll fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene. (c) 1993 John Wiley & Sons, Inc.  相似文献   

20.
Aims: Paromamine is a vital and common intermediate in the biosynthesis of 4,5 and 4,6‐disubstituted 2‐deoxystreptamine (DOS)‐containing aminoglycosides. Our aim is to develop an engineered Escherichia coli system for heterologous production of paromamine. Methods and Results: We have constructed a mutant of E. coli BL21 (DE3) by disrupting glucose‐6‐phosphate isomerase (pgi) of primary metabolic pathway to increase glucose‐6‐phosphate pool inside the host. Disruption was carried out by λ Red/ET recombination following the protocol mentioned in the kit. Recombinants bearing 2‐deoxy‐scyllo‐inosose (DOI), DOS and paromamine producing genes were constructed from butirosin gene cluster and heterologously expressed in engineered host designed as E. coli BL21 (DE3) Δpgi. Secondary metabolites produced by the recombinants fermentated in 2YTG medium were extracted, and analysis of the extracts showed there is formation of DOI, DOS and paromamine. Conclusions: Escherichia coli system is engineered for heterologous expression of paromamine derivatives of aminoglycoside biosynthesis. Significance and Impact of the Study: This is the first report of heterologous expression of paromamine gene set in E. coli. Hence a new platform is established in E. coli system for the production of paromamine which is useful for the exploration of novel aminoglycosides by combinatorial biosynthesis of 4,5‐ and 4,6‐disubtituted route of DOS‐containing aminoglycosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号