首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histone deactylases (HDACs) are members of an ancient enzyme family found in eukaryotes as well as in prokaryotes such as archaebacteria and eubacteria. We here report a new histone deacetylase (Tca HDAC) that was cloned from the genomic library of Thermus caldophilus GK24 based on homology analysis with human histone deacetylase1 (HDAC1). The gene contains an open reading frame encoding 375 amino acids with a calculated molecular mass of 42,188 Da and the deduced amino acid sequence of Tca HDAC showed a 31% homology to human HDAC1. The Tca HDAC gene was over-expressed in Escherichia coli using a Glutathione-S transferase (GST) fusion vector (pGEX-4T-1) and the purified protein showed a deacetylase activity toward the fluorogenic substrate for HDAC. Moreover, the enzyme activity was inhibited by trichostatin A, a specific HDAC inhibitor, in a dose-dependent manner. Optimum temperature and pH of the enzyme was found to be approximately 70 degrees C and 7.0, respectively. In addition, zinc ion is required for catalytic activity of the enzyme. Together, these data demonstrate that Tca HDAC is a new histone deacetylase-like enzyme from T. caldophilus GK24 and will be a useful tool for deciphering the role of HDAC in the prokaryote and development of new biochemical reactions.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
The gene encoding Thermus caldophilus GK24 (Tca) alkaline phosphatase was cloned into Escherichia coli. The primary structure of Tca alkaline phosphatase was deduced from its nucleotide sequence. The Tca alkaline phosphatase precursor, including the signal peptide sequence, was comprised of 501 amino acid residues. Its molecular mass was determined to be 54? omitted?760 Da. On the alignment of the amino acid sequence, Tca alkaline phosphatase showed sequence homology with the microbial alkaline phosphatases, 20% identity with E. coli alkaline phosphatase and 22% Bacillus subtilis (Bsu) alkaline phosphatases. High sequence identity was observed in the regions containing the Ser-102 residue of the active site, the zinc and magnesium binding sites of E. coli alkaline phosphatase. Comparison of Tca alkaline phosphatase and E. coli alkaline phosphatase structures suggests that the reduced activity of the Tca alkaline phosphatase, in the presence of zinc, is directly involved in some of the different metal binding sites. Heat-stable Tca alkaline phosphatase activity was detected in E. coli YK537, harboring pJRAP.  相似文献   

11.
12.
13.
14.
Infection of macrophages with mycobacteria has been shown to inhibit the macrophage response to IFN-gamma. In the current study, we examined the effect of Mycobacteria avium, Mycobacteria tuberculosis, and TLR2 stimulation on IFN-gamma-induced gene expression in human PMA-differentiated THP-1 monocytic cells. Mycobacterial infection inhibited IFN-gamma-induced expression of HLA-DRalpha and HLA-DRbeta mRNA and partially inhibited CIITA expression but did not affect expression of IFN regulatory factor-1 mRNA. To determine whether inhibition of histone deacetylase (HDAC) activity could rescue HLA-DR gene expression, butyric acid and MS-275, inhibitors of HDAC activity, were added at the time of M. avium or M. tuberculosis infection or TLR2 stimulation. HDAC inhibition restored the ability of these cells to express HLA-DRalpha and HLA-DRbeta mRNA in response to IFN-gamma. Histone acetylation induced by IFN-gamma at the HLA-DRalpha promoter was repressed upon mycobacteria infection or TLR2 stimulation. HDAC gene expression was not affected by mycobacterial infection. However, mycobacterial infection or TLR2 stimulation up-regulated expression of mammalian Sin3A, a corepressor that is required for MHC class II repression by HDAC. Furthermore, we show that the mammalian Sin3A corepressor is associated with the HLA-DRalpha promoter in M. avium-infected THP-1 cells stimulated with IFN-gamma. Thus, mycobacterial infection of human THP-1 cells specifically inhibits HLA-DR gene expression by a novel pathway that involves HDAC complex formation at the HLA-DR promoter, resulting in histone deacetylation and gene silencing.  相似文献   

15.
16.
17.
18.
19.
Lai JC  Cheng YW  Goan YG  Chang JT  Wu TC  Chen CY  Lee H 《DNA Repair》2008,7(8):1352-1363
Methylation of the O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter is associated with G:C to A:T transitions in the p53 gene in various human cancers, including lung cancer. In tumors with p53 mutation, MGMT promoter methylation is more common in advanced tumors than in early tumors. However, in tumors with wild-type p53, MGMT promoter methylation is independent of tumor stage. To elucidate whether p53 participates in MGMT promoter methylation, we engineered three cell models: A549 cells with RNA interference (RNAi)-mediated knockdown of p53, and p53 null H1299 cells transfected with either wild-type p53 (WT-p53) or mutant-p53 (L194R, and R249S-p53). Knockdown of endogenous p53 increased MGMT promoter methylation in A549 cells, and transient expression of WT-p53 in p53 null H1299 cells diminished MGMT promoter methylation, whereas the MGMT promoter methylation status were unchanged by expression of mutant-p53. Previous work showed that p53 modulates DNA-methyltransferase 1 (DNMT1) expression; we additionally examined chromatin remodeling proteins expression levels of histone deacetylase 1 (HDAC1). We found that p53 knockdown elevated expression of both DNMT1 and HDAC1 in A549 cells. Conversely, expressing WT-p53 in p53 null H1299 cells reduced DNMT1 and HDAC1 expression, but the reduction of both proteins was not observed in expressing mutant-p53 H1299 cells. CHIP analysis further showed that DNMT1 and HDAC1 binding to the MGMT promoter was increased by MGMT promoter methylation and decreased by MGMT promoter demethylation. In conclusion, MGMT promoter methylation modulated by p53 status could partially promote p53 mutation occurrence in advanced lung tumors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号