首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulolytic Activity of Clostridium acetobutylicum   总被引:7,自引:6,他引:1       下载免费PDF全文
Clostridium acetobutylicum NRRL B527 and ATCC 824 exhibited extracellular and cell-bound endoglucanase and cellobiase activities during growth in a chemically defined medium with cellobiose as the sole source of carbohydrate. For both strains, the endoglucanase was found to be mainly extracellular (70 to 90%) during growth in continuous or batch cultures with the pH maintained at 5.2, whereas the cellobiase was mainly cell associated (60 to 90%). During continuous cultivation of strain B527 with cellobiose as the limiting nutrient, maximum production of the endoglucanase and cellobiase occurred at pH values of 5.2 and 4.8, respectively. In the carbon-limited continuous cultures, strain 824 produced similar levels of endoglucanase, cellobiosidase, and cellobiase activities regardless of the carbon source used. However, in ammonium- or phosphate-limited cultures, with an excess of glucose, only 1/10 of the endoglucanase was produced, and neither cellobiosidase nor cellobiase activities were detectable. A crude extracellular enzyme preparation from strain B527 hydrolyzed carboxymethylcellulose and phosphoric acid-swollen cellulose readily and microcrystalline cellulose (A vicel) to a lesser extent. Glucose accounted for more than 90% of the reducing sugar produced by the hydrolysis of acid-swollen cellulose and Avicel. Strain B527 did not grow in medium with acid-swollen cellulose as the sole source of carbohydrate, although it grew readily on the products obtained by hydrolyzing the cellulose in vitro with a preparation of extracellular cellulase derived from the same organism.  相似文献   

2.
A fungus, Fusarium verticillioides (NRRL 26518), was isolated by screening soil samples using corn fiber xylan as carbon source. The extracellular xylanase from this fungal strain was purified to apparent homogeneity from the culture supernatant by ultrafiltration using a 30,000 cut-off membrane, octyl-Sepharose chromatography and Bio gel A-0.5 m gel filtration. The purified xylanase (specific activity 492 U/mg protein; MW 24,000; pI 8.6) displayed an optimum temperature at 50 degrees C and optimum pH at 5.5, a pH stability range from 4.0 to 9.5 and thermal stability up to 50 degrees C. It hydrolyzed a variety of xylan substrates mainly to xylobiose and higher short-chain xylooligosaccharides. No xylose was formed. The enzyme did not require metal ions for activity and stability.  相似文献   

3.
Summary Three strains ofCl. acetobutylicum and one ofCl. butyricum have been tested for their ability to ferment xylose to butanol. ATCC 824 and NRRL 527 produced 0.28 g solvents/g xylose, while ATCC 8260 and NRRL 594 produced much butyric acid. In 2-stage fermentations in which ATCC 8260 or NRRL 594 acted upon xylose for 12 to 20 h, followed by NRRL 527 for a total of 3 days, yields of solvent were better, 0.32 g/g xylose. Upon fermenting a mixture of sugars simulating sulphite waste liquor 0.36 g solvents/g sugar were obtained. Sugar consumption in both cases was about 96%.  相似文献   

4.
By enrichment with xylose, nine mesophilic strains of anaerobic bacteria were obtained from various sources. Two isolates appear to belong to the genus Eubacterium. Six other strains belong to the genus Clostridium. Three of the isolated strains utilized larch wood xylan. The percentage of utilization of xylose and xylan and the yield of fermentation end products — viz. acetic acid and butyric acid-are equivalent to that of Clostridium acetobutylicum (ATCC 824) and reported thermophilic strains.  相似文献   

5.
An endo-acting xylanase is isolated from the culture medium of Clostridium sp. BOH3 when xylan, glucose, xylose, or sugarcane bagasse hydrolysate (SBH) is used as a carbon source. Crude xylanase is purified by using an anionic Q-column with a yield of 39 %. The pure xylanase has a molecular weight of 35.8 kDa, and it shows optimal activity at pH 5 and 60 °C. When beechwood xylan is used as a substrate, this xylanase liberates short oligosaccharides (XOS) predominantly, ranging from xylobiose (X2) to xylopentaose (X5). However, no xylose can be detected, suggesting that this is an endo-β-1,4-xylanase. Kinetic study of this xylanase reveals that K m and V max are 1.36 mg/ml and 212 μmol/(min. mg protein), respectively. On the basis of amino acid sequence, this enzyme shows homology to xylanase (xynb) from Clostridium acetobutylicum ATCC 824, but this enzyme has several distinctive characteristics. For example, its activity can be enhanced with the addition of divalent metal ions, and it produces XOS exclusively when xylan is used as a substrate. These unique characteristics suggest that this is a new enzyme.  相似文献   

6.
A thermostable xylanase gene, xyn10A (CAP0053), was cloned from Clostridium acetobutylicum ATCC 824. The nucleotide sequence of the C. acetobutylicum xyn10A gene encoded a 318-amino-acid, single-domain, family 10 xylanase, Xyn10A, with a molecular mass of 34 kDa. Xyn10A exhibited extremely high (92%) amino acid sequence identity with Xyn10B (CAP0116) of this strain and had 42% and 32% identity with the catalytic domains of Rhodothermus marinus xylanase I and Thermoascus aurantiacus xylanase I, respectively. Xyn10A enzyme was purified from recombinant Escherichia coli and was highly active toward oat-spelt and Birchwood xylan and slightly active toward carboxymethyl cellulose, arabinogalactouronic acid, and various p-nitrophenyl monosaccharides. Xyn10A hydrolyzed xylan and xylooligosaccharides larger than xylobiose to produce xylose. This enzyme was optimally active at 60°C and had an optimum pH of 5.0. This is one of a number of related activities encoded on the large plasmid in this strain.  相似文献   

7.
Thermophilic, aerobic bacteria isolated from Icelandic hot springs were screened for xylanase activity. Of 97 strains tested, 14 were found to be xylanase positive. Xylanase activities up to 12 nkat/ml were produced by these strains in shake flasks on xylan medium. The xylanases of the two strains producing the highest activities (ITI 36 and ITI 283) were similar with respect to temperature and pH optima (80°C and pH 8.0). Xylanase production of strain ITI 36 was found to be induced by xylan and xylose. Xylanase activity of 24 nkat/ml was obtained with this strain in a laboratory-scale-fermentor cultivation on xylose medium. -Xylosidase activity was also detected in the culture filtrate. The thermal half-life of ITI 36 xylanase was 24 h at 70°C. The highest production of sugars from hydrolysis of beech xylan was obtained at 70°C, although xylan depolymerization was detected even up to 90°C. Correspondence to: M. Rättö  相似文献   

8.
Bioconversion of Xylan to Triglycerides by Oil-Rich Yeasts   总被引:2,自引:1,他引:1       下载免费PDF全文
A series of lipid-accumulating yeasts was examined for their potential to saccharify xylan and accumulate triglyceride. Of the genera tested, including Candida, Cryptococcus, Lipomyces, Rhodosporidium, Rhodotorula, and Trichosporon, only Cryptococcus and Trichosporon isolates saccharified xylan. All of the strains could assimilate xylose and accumuate triglyceride under nitrogen-limiting conditions. Strains of Cryptococcus albidus were found to be especially useful for a one-step saccharification of xylan coupled to triglyceride synthesis. Cryptococcus terricolus, a strain constitutive for lipid accumulation, lacked extracellular xylanase, but did assimilate xylose and xylobiose and was able to continuously convert xylan to triglyceride if the culture medium was supplemented with xylanase.  相似文献   

9.
Summary An amyloglucosidase from a mycelial culture of the mushroom Termitomyces clypeatus hydrolysed larch wood xylan independently and synergistically with an endo-(14) xylanase of the same fungus. The glucoamylase saccharified xylan predigested with xylanase at a faster rate compared to that of xylanase acting on amylase-digested xylan. However, overall saccharification of xylan in both cases was the same. Only glucose was liberated from xylan by amylase digestion whereas xylose, xylobiose and other oligosaccharides were liberated during xylanase digestion. The synergistic response of enzyme combinations was reflected in the liberation of glucose from xylan, rather than xylose. Glucoamylase and xylanase activities on soluble and insoluble fractions of larch wood xylan with different xylose and glucose contents suggested that synergism in xylanolysis by the presence of glucoamylase was dependent on the activity of the participating xylanase on the xylan preparation. It is suggested that possibly -glucosidic linkages are present in xylan and that amyloglucosidase might be involved in xylanolysis. Correspondence to: S. Sengupta  相似文献   

10.
《Process Biochemistry》1999,34(5):511-517
Seven fungal strains were screened for their ability to produce cellulase-free xylanases that could be used in pretreatment of sulphite pulp prior to bleaching. The potential xylanase producers were subjected to shake flask fermentations using four different carbon sources: wheat bran, corn cobs, oat spelts xylan and bleach plant effluent. When grown on corn cobs, Aspergillus foetidus (ATCC 14916) produced significant levels of xylanase (547.4 U/ml), accompanied however by 6.6 U/ml of cellulase activity. Two other strains, Aspergillus oryzae (NRRL 1808) and Gliocladium viride (CBS 658.70), produced high yields of cellulase-free xylanase on oat spelts xylan. The crude enzymes of these two isolates were characterized with respect to pH and temperature optima and stability in order to standardize the optimum conditions for their use on pulp. Although the two xylanases differed in their abilities to remove reducing sugars from pulp, their biobleaching abilities, when assessed in hydrogen peroxide delignification of pulp, were very similar: both of them increased brightness by 1.4 points and removed 7% of hemicellulose from pulp.  相似文献   

11.
Sulfolobus solfataricus strain Oalpha was previously isolated for its ability to grow on minimal medium supplemented with xylan as a carbon source. The strain exhibited thermostable xylanase activity but several attempts to identify the gene encoding for the activity failed. Further studies showed that the xylanase displayed activity on carboxymethylcellulose (CMC) and the new activity was characterized. It exhibited an optimal temperature and pH of 95 degrees C and 3.5, respectively, and a half-life of 53 min at 95 degrees C. The enzyme, which was demonstrated to be glycosylated, hydrolyzed CMC in an endo-manner releasing cellobiose and other cello-oligomers. Analysis of the tryptic fragments by tandem mass spectrometry led to identification of the endoglucanase precursor, encoded by the sso1354 gene, as the protein possessing dual activity. The efficiency of the SSO1354 protein in degrading cellulosic and hemicellulosic fractions contained in agronomic residues was tested at low pH and high temperature. Cellulose and xylan were degraded to glucose and xylose at 90 degrees C, pH 4 by an enzyme mix consisting of SSO1354 and additional glycosyl hydrolases from S. solfataricus Oalpha. Given its role in saccharification processes requiring high temperatures and acidic environments, SSO1354 represents an interesting candidate for the utilization of agro-industrial waste for fuel production.  相似文献   

12.
The thermostability of beta-xylanases produced by nine thermophilic Thermomyces lanuginosus strains in a coarse corn cob medium was assessed. The xylanase produced by T. lanuginosus strain SSBP retained 100% of its activity after 6 h at temperatures up to 65 degrees C. In comparison seven ATCC strains and the DSM 5826 strain of T. lanuginosus only retained 100% xylanase activity at temperatures up to 60 degrees C. Culture filtrates of T. lanuginosus strain SSBP grown on coarse corn cobs, oatspelts xylan, birchwood xylan, wheatbran, locust beangum, and sugar cane bagasse, retained 100% xylanase activity at temperatures up to 60 degrees C. The xylanase produced on corn cobs was the most thermostable and showed an increase of approximately 6% from 70 degrees C to 80 degrees C. The T(1/2) of all strains at 70 degrees C at pH 6.5 varied greatly from 63 min for strain ATCC 28083 to 340 min for strain SSBP. The xylanase of strain SSBP was much less thermostable at pH 5.0 and pH 12.0 with T(1/2) values of 11.5 min and 15 min, respectively at 70 degrees C. At 50 degrees C, the enzyme of T. lanuginosus strain SSBP produced on coarse corn cobs was stable within the pH range of 5.5-10.0. Furthermore, the enzyme retained total activity at 60 degrees C for over 14 days and at 65 degrees C for over 48 h. The xylanase of T. lanuginosus strain SSBP possesses thermo- and pH stability properties that may be attractive to industrial application.  相似文献   

13.
W oolley , R.C. & M orris , J.G. 1990. Stability of solvent production by Clostridium acetobutylicum in continuous culture: strain differences. Journal of Applied Bacteriology 69 , 718–728.
Several strains of Clostridium acetobutylicum , including strains ATCC 824 and DSM 1731, continue to produce solvents during prolonged periods of chemostat culture. In such cultures, dominance is established by asporogenous mutant(s) that retain the ability to produce solvents. Strain NCIB 8052 (which is not identical with ATCC 824) behaved differently in that its chemostat cultures invariably became acidogenic due to ultimate selection of asporogenous mutant(s) unable to produce solvents, incapable of synthesizing granulose, and demonstrating enhanced sensitivity to environmental stresses of various types. These mutants spontaneously reverted, at a low but measurable frequency, to the parental phenotype, indicating thai their multiple loss of capacities was the pleiotropic consequence of a lesion in some global regulatory gene. Their resemblance to previously described cls mutants of strain P262 and the possible nature of the affected regulatory gene are discussed. A simple tetrazolium blue plate assay procedure is described which allows visual discrimination between solvent-producing and non-solventogenic colonies of Cl. ocetobutylicum .  相似文献   

14.
Summary Bacillus subtilis CD4, when grown in nutrient broth or minimal medium in presence of xylan, produced extracellular xylanase that hydrolyzed xylan optimally at pH 5. The enzyme was induced by xylan, xylose and glucose. Addition of xylose or glucose in xylan containing medium did not affect enzyme production. The structural gene encoding xylanase was cloned and expressed in E. coli. The recombinant enzyme exhibited similar properties like that of native enzyme including resistance to repression by xylose and glucose.  相似文献   

15.
Xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) production was investigated in the ruminal anaerobic fungus Neocallimastix frontalis. The enzyme was released principally into the culture fluid and had pH and temperature optima of 5.5 and 55 degrees C, respectively. In the presence of low concentrations of substrate, the enzyme was stabilized at 50 degrees C. Xylobiose was the principal product of xylanase action, with lesser amounts of longer-chained xylooligosaccharides. No xylose was detected, indicating that xylobiase activity was absent. Activities of xylanase up to 27 U ml-1 (1 U represents 1 micromol of xylose equivalents released min-1) were obtained for cultures grown on xylan (from oat spelt) at 2.5 mg ml-1 in shaken cultures. No growth occurred in unshaken cultures. Xylanase production declined with elevated concentrations of xylan (less than 2.5 mg ml-1), and this was accompanied by an accumulation of xylose and, to a lesser extent, arabinose. Addition of either pentose to cultures grown on low levels of xylan in which neither sugar accumulated suppressed xylanase production, and in growth studies with the paired substrates xylan-xylose, active production of the enzyme occurred during growth on xylan only after xylose had been preferentially utilized. When cellobiose, glucose, and xylose were tested as growth substrates for the production of xylanase (each initially at 2.5 mg ml-1), they were found to be less effective than xylan, and use of xylan from different origins (birch wood or larch wood) as the growth substrate or in the assay system resulted in only marginal differences in enzyme activity. However, elevated production of xylanase occurred during growth on crude hemicellulose (barley straw leaf). The results are discussed in relation to the role of the anaerobic fungi in the ruminal ecosystem, and the possible application of the enzyme in bioconversion processes is also considered.  相似文献   

16.
Xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8) production was investigated in the ruminal anaerobic fungus Neocallimastix frontalis. The enzyme was released principally into the culture fluid and had pH and temperature optima of 5.5 and 55 degrees C, respectively. In the presence of low concentrations of substrate, the enzyme was stabilized at 50 degrees C. Xylobiose was the principal product of xylanase action, with lesser amounts of longer-chained xylooligosaccharides. No xylose was detected, indicating that xylobiase activity was absent. Activities of xylanase up to 27 U ml-1 (1 U represents 1 micromol of xylose equivalents released min-1) were obtained for cultures grown on xylan (from oat spelt) at 2.5 mg ml-1 in shaken cultures. No growth occurred in unshaken cultures. Xylanase production declined with elevated concentrations of xylan (less than 2.5 mg ml-1), and this was accompanied by an accumulation of xylose and, to a lesser extent, arabinose. Addition of either pentose to cultures grown on low levels of xylan in which neither sugar accumulated suppressed xylanase production, and in growth studies with the paired substrates xylan-xylose, active production of the enzyme occurred during growth on xylan only after xylose had been preferentially utilized. When cellobiose, glucose, and xylose were tested as growth substrates for the production of xylanase (each initially at 2.5 mg ml-1), they were found to be less effective than xylan, and use of xylan from different origins (birch wood or larch wood) as the growth substrate or in the assay system resulted in only marginal differences in enzyme activity. However, elevated production of xylanase occurred during growth on crude hemicellulose (barley straw leaf). The results are discussed in relation to the role of the anaerobic fungi in the ruminal ecosystem, and the possible application of the enzyme in bioconversion processes is also considered.  相似文献   

17.
The Clostridium acetobutylicum xylanase gene xyn10B (CAP0116) was cloned from the type strain ATCC 824, whose genome was recently sequenced. The nucleotide sequence of C. acetobutylicum xyn10B encodes a 318-amino acid protein. Xyn10B consists of a single catalytic domain that belongs to family 10 of glycosyl hydrolases. The enzyme was purified from recombinant Escherichia coli. The Xyn10B enzyme was highly active toward birchwood xylan, oat-spelt xylan, and moderately active toward avicel, carboxymethyl cellulose, polygalacturonic acid, lichenan, laminarin, barley--glucan and various p-nitrophenyl monosaccharides. Xyn10B hydrolyzed xylan and xylooligosaccharides to produce xylobiose and xylotriose. The pH optimum of Xyn10B was 5.0, and the optimal temperature was 70°C. The enzyme was stable at 60°C at pH 5.0–6.5 for 1 h without substrate. This is one of a number of xylan-related activities encoded on the large plasmid in C. acetobutylicum ATCC 824.  相似文献   

18.
Xylanase production by seven fungal strains was investigated using concentrated spent sulphite liquor (SSLc), xylan and d-xylose as carbon substrates. An SSLc-based medium induced xylanase production at varying levels in all of these strains, with Aspergillus oryzae NRRL 3485 and Aspergillus phoenicis ATCC 13157 yielding activities of 164 and 146 U ml−1, respectively; these values were higher than those obtained on xylan or d-xylose with the same fungal strains. The highest xylanase activity of 322 U ml−1 was obtained with Aspergillus foetidus ATCC 14916 on xylan. Electrophoretic and zymogram analysis indicated three xylanases from A. oryzae with molecular weights of approximately 32, 22 and 19 kDa, whereas A. phoenicis produced two xylanases with molecular weights of about 25 and 21 kDa. Crude xylanase preparations from these A. oryzae and A. phoenicis strains exhibited optimal activities at pH 6.5 and 5.0 and at 65 and 55°C, respectively. The A. oryzae xylanolytic activity was stable at 50°C over the pH range 4.5–10. The crude xylanase preparations from these A. oryzae and A. phoenicis strains had negligible cellulase activity, and their application in the biobleaching of hardwood pulp reduced chlorine dioxide consumption by 20–30% without sacrificing brightness.  相似文献   

19.
Xylanase A, one of several extracellular xylanases produced by Schizophyllum commune strain Delmar when grown in submerged culture with spruce sawdust as carbon source, was purified 43-fold in 25% yield with respect to total xylanase activity. Although some polysaccharide was strongly bound to the purified enzyme, the complex could be dissociated by sodium dodecyl sulfate and appeared homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the protein, calculated from the electrophoretic mobility, was 33,000. The molecular activity of the purified xylanase A, determined with soluble larch xylan as substrate, was 1.4 X 10(5) min-1, with xylobiose and xylose as the major products. The enzyme had a pH optimum of 5.0 and a temperature optimum of 55 degrees C in 10-min assays. The acid hydrolysate of xylanase A was rich in aspartic acid and aromatic amino acids. The sequence of 27 residues at the amino terminus showed no homology with known sequences of other proteins.  相似文献   

20.
Xylanase A, one of several extracellular xylanases produced by Schizophyllum commune strain Delmar when grown in submerged culture with spruce sawdust as carbon source, was purified 43-fold in 25% yield with respect to total xylanase activity. Although some polysaccharide was strongly bound to the purified enzyme, the complex could be dissociated by sodium dodecyl sulfate and appeared homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the protein, calculated from the electrophoretic mobility, was 33,000. The molecular activity of the purified xylanase A, determined with soluble larch xylan as substrate, was 1.4 X 10(5) min-1, with xylobiose and xylose as the major products. The enzyme had a pH optimum of 5.0 and a temperature optimum of 55 degrees C in 10-min assays. The acid hydrolysate of xylanase A was rich in aspartic acid and aromatic amino acids. The sequence of 27 residues at the amino terminus showed no homology with known sequences of other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号