首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When the nerves of isolated frog sartorius muscles were stimulated at 10 Hz, synaptic vesicles in the motor nerve terminals became transiently depleted. This depletion apparently resulted from a redistribution rather than disappearance of synaptic vesicle membrane, since the total amount of membrane comprising these nerve terminals remained constant during stimulation. At 1 min of stimulation, the 30% depletion in synaptic vesicle membrane was nearly balanced by an increase in plasma membrane, suggesting that vesicle membrane rapidly moved to the surface as it might if vesicles released their content of transmitter by exocytosis. After 15 min of stimulation, the 60% depletion of synaptic vesicle membrane was largely balanced by the appearance of numerous irregular membrane-walled cisternae inside the terminals, suggesting that vesicle membrane was retrieved from the surface as cisternae. When muscles were rested after 15 min of stimulation, cisternae disappeared and synaptic vesicles reappeared, suggesting that cisternae divided to form new synaptic vesicles so that the original vesicle membrane was now recycled into new synaptic vesicles. When muscles were soaked in horseradish peroxidase (HRP), this tracerfirst entered the cisternae which formed during stimulation and then entered a large proportion of the synaptic vesicles which reappeared during rest, strengthening the idea that synaptic vesicle membrane added to the surface was retrieved as cisternae which subsequently divided to form new vesicles. When muscles containing HRP in synaptic vesicles were washed to remove extracellular HRP and restimulated, HRP disappeared from vesicles without appearing in the new cisternae formed during the second stimulation, confirming that a one-way recycling of synaptic membrane, from the surface through cisternae to new vesicles, was occurring. Coated vesicles apparently represented the actual mechanism for retrieval of synaptic vesicle membrane from the plasma membrane, because during nerve stimulation they proliferated at regions of the nerve terminals covered by Schwann processes, took up peroxidase, and appeared in various stages of coalescence with cisternae. In contrast, synaptic vesicles did not appear to return directly from the surface to form cisternae, and cisternae themselves never appeared directly connected to the surface. Thus, during stimulation the intracellular compartments of this synapse change shape and take up extracellular protein in a manner which indicates that synaptic vesicle membrane added to the surface during exocytosis is retrieved by coated vesicles and recycled into new synaptic vesicles by way of intermediate cisternae.  相似文献   

2.
Freeze-fracture analysis of the neural connections in the outer plexiform layer of the retina of primates (Macaca mulatta and Macaca arctoides) demonstrates a remarkable diversity in the internal structure of the synaptic membranes. In the invaginating synapses of cone pedicles, the plasma membrane of the photoreceptor ending contains an aggregate of A-face particles, a hexagonal array of synaptic vesicle sites, and rows of coated vesicle sites, which are deployed in sequence from apex to base of the synaptic ridge. The horizontal cell dendrites lack vesicle sites and have two aggregates of intramembrane A-face particles, one at the interface with the apex of the synaptic ridge, the other opposite the tip of the invaginating midget bipolar dendrite. Furthermore, the horizontal cell dendrites are interconnected by a novel type of specialized junction, characterized by: (a) enlarged intercellular cleft, bisected by a dense plate and traversed by uniformly spaced crossbars; (b) symmetrical arrays of B-face particles arranged in parallel rows within the junctional membranes; and (c) a layer of dense material on the cytoplasmic surface of the membranes. The plasmalemma of the invaginating midget bipolar dendrite is unspecialized. At the contact region between the basal surface of cone pedicles and the dendrites of the flat midget and diffuse cone bipolar cells, the pedicle membrane has moderately clustered A-face particles, but no vesicle sites, whereas the adjoining membrane of the bipolar dendrites contains an aggregate of B-face particles. The invaginating synapse of rod spherules differs from that of cone pedicles, because the membrane of the axonal endings of the horizontal cells only has an A-face particle aggregate opposite the apex of the synaptic ridge. Specialized junctions between horizontal cell processes, characterized by symmetrical arrays of intramembrane B-face particles, are also present in the neuropil underlying the photoreceptor endings. Small gap junctions connect the processes of the horizontal cells; other gap junctions probably connect the bipolar cell dendrites which make contact with each cone pedicle. Most of the junctional specializations typical of the primate outer plexiform layer are also found in the rabbit retina. The fact that specialized contacts between different types of neurons interacting in the outer plexiform layer have specific arrangements of intramembrane particles strongly suggests that the internal structure of the synaptic membranes is intimately correlated with synaptic function.  相似文献   

3.
Membrane recycling in the cone cell endings of the turtle retina   总被引:8,自引:5,他引:3       下载免费PDF全文
  相似文献   

4.
The vertebrate retina contains two ultrastructurally distinct types of vesicle-containing synapses: conventional synapses, made predominantly by amacrine cells, and ribbon synapses, formed by photoreceptor and bipolar cells. To identify molecular differences between these synapse types, we have compared the distribution of the synapsins, a family of nerve terminal phosphoproteins, with that of synaptophysin (p38) and SV2, two intrinsic membrane proteins of synaptic vesicles. We report an absence of synapsin I and II immunoreactivity from all ribbon-containing nerve terminals. These include terminals of rod cells in developing and adult rat retina, rod and cone cells in monkey and salamander retinas, and rat bipolar cells. Furthermore, we show that synapsins I and II are differentially distributed among conventional synapses of amacrine cells. The absence of the synapsins from ribbon synapses suggests that vesicle clustering and mobilization in these terminals differ from that in conventional synapses.  相似文献   

5.
To test the effects of isolation on adult neurons, we investigated the fine structure and synaptic activity of rod cells dissociated from the mature salamander retina and maintained in vitro. First, freshly isolated rod cells appeared remarkably similar to their counterparts in the intact retina: the outer segment retained its stack of membranous disks and the inner segment contained its normal complements of organelles. Some reorganization of the cell surface, however, was observed: (a) radial fins, present at the level of the cell body, were lost; and (b) the apical and distal surfaces of the inner and outer segments, respectively became broadly fused. Second, the synaptic endings or pedicles retained their presynaptic active zones: reconstruction of serially sectioned pedicles by using three-dimensional computer graphics revealed that 73% of the synaptic ribbons remained attached to the plasmalemma either at the cell surface or along its invaginations. Finally, tracer experiments that used horseradish peroxidase demonstrated that dissociated rod cells recycled synaptic vesicle membrane in the dark and thus probably released transmitter by exocytosis. Under optimal conditions, a maximum of 40% of the synaptic vesicles within the pedicle were labeled. As in the intact retina, uptake of horseradish peroxidase was suppressed by light. Thus, freshly dissociated receptor neurons retained many of their adult morphological and physiological characteristics. In long-term culture, the photoreceptors tended to round up; however, active zones were present even 2 wk after removal of the postsynaptic processes.  相似文献   

6.
The patch-clamp technique was used to investigate ionic channels in the apical membrane of rabbit proximal tubule cells in primary culture. Cell-attached recordings revealed the presence of a highly selective K+ channel with a conductance of 130 pS. The channel activity was increased with membrane depolarization. Experiments performed on excised patches showed that the channel activity depended on the free Ca2+ concentration on the cytoplasmic face of the membrane and that decreasing the cytoplasmic pH from 7.2 to 6.0 also decreased the channel activity. In symmetrical 140 mM KCl solutions the channel conductance was 200 pS. The channel was blocked by barium, tetraethylammonium and Leiurus quinquestriatus scorpion venom (from which charybdotoxin is extracted) when applied to the extracellular face of the channel. Barium and quinidine also blocked the channel when applied to the cytoplasmic face of the membrane. Another K+ channel with a conductance of 42 pS in symmetrical KCl solutions was also observed in excised patches. The channel was blocked by barium and apamin, but not by tetraethylammonium applied to the extracellular face of the membrane. Using the whole-cell recording configuration we determined a K+ conductance of 4.96 nS per cell that was blocked by 65% when 10 mM tetraethylammonium was applied to the bathing medium.  相似文献   

7.
ARF6 regulates membrane trafficking between the plasma membrane and endosomes. We investigated the role of ARF6 in synaptic vesicle biogenesis as this process occurs both at the plasma membrane and at endosomes. We used a synaptic vesicle marker protein, p-selectin-horseradish peroxidase (HRP), to follow the effects of ARF6 expression on synaptic vesicle biogenesis in PC12 neuroendocrine cells. Expression of a constitutively active ARF6 mutant increased, while expression of a nucleotide-free ARF6 mutant decreased, p-selectin-HRP levels in the synaptic vesicle peak. These results provide the first direct evidence for a role for ARF6 in synaptic vesicle biogenesis.  相似文献   

8.
Synaptic vesicles need to be mobile to reach their release sites during synaptic activity. We investigated vesicle mobility throughout the synaptic vesicle cycle using both conventional and subdiffraction-resolution stimulated emission depletion fluorescence microscopy. Vesicle tracking revealed that recently endocytosed synaptic vesicles are highly mobile for a substantial time period after endocytosis. They later undergo a maturation process and integrate into vesicle clusters where they exhibit little mobility. Despite the differences in mobility, both recently endocytosed and mature vesicles are exchanged between synapses. Electrical stimulation does not seem to affect the mobility of the two types of vesicles. After exocytosis, the vesicle material is mobile in the plasma membrane, although the movement appears to be somewhat limited. Increasing the proportion of fused vesicles (by stimulating exocytosis while simultaneously blocking endocytosis) leads to substantially higher mobility. We conclude that both high- and low-mobility states are characteristic of synaptic vesicle movement.  相似文献   

9.
Presynaptic nerve terminals when depolarized are sensitive to morphological and functional alteration by horseradish peroxidase. Mouse brain slices, 0.1 mm, depolarized by a K+-HEPES buffer and exposed to horseradish peroxidase exhibited alterations in both synaptic vesicle membrane structure and in high-affinity [14C]γ-aminobutyric acid uptake. The post stimulatory retrieval of synaptic vesicles from the nerve terminal plasma membrane in the presence of horseradish peroxidase resulted in a decrease in the synaptic vesicle population with a concurrent increase in non-synaptic vesicle membrane structures. High-affinity [14C]γ-aminobutyric acid uptake into 0.1-mm slices of mouse cerebral cortex and ponsmedulla-spinal cord was inhibited by 31% and 24%, respectively, after incubation for 60 min in K+-HEPES buffer containing horseradish peroxidase. Superoxide dismutase protected both the synaptic vesicle membrane and the high-affinity uptake system from the deleterious effects of horseradish peroxidase, pointing to the possible involvement of superoxide anion radicals in the horseradish peroxidase-related effects. These horseradish peroxidase induced alterations appear to be directed towards the exposed synaptic vesicle membrane, since non-stimulated brain slices exposed to horseradish peroxidase do not exhibit a reduction in either high- or low-affinity [14C]γ-aminobutyric acid uptake. Low-affinity uptake of [14C]γ-aminobutyric acid and [14C]α-aminoisobutyric acid into cortical slices was not affected after incubation in K+-HEPES with horseradish peroxidase. Low-affinity uptake, however, is reduced by the high-K+/Na+-free stimulatory incubation prior to uptake. It appears, thus, that high- and low-affinity uptake are distinct and different systems, with the high-affinity transport system structurally associated with synaptic vesicle membrane.  相似文献   

10.
Intact neurons in cultures of fetal rodent spinal cord explants show stimulation-dependent uptake of horseradish peroxidase (HRP) into many small vesicles and occasional tubules and multivesicular bodies (MVB) at presynaptic terminals. Presynaptic terminals were allowed to take up HRP during 1 h of strychnine-enhanced stimulation of synaptic transmitter release and then "chased" in tracer-free medium either with strychnine or with 10 mM Mg++ which depresses transmitter release. Tracer-containing vesicles are lost from terminals under both chase conditions; the loss is more rapid (4-8 h) with strychnine than with 10 mM Mg++ (8-16 h). There is a parallel decrease in the numbers of labeled MVB's at terminals. Loss of tracer with 10 mM Mg++ does not appear to be due to the membrane rearrangements (exocytosis coupled to endocytosis) that presumably lead to initial tracer uptake; terminals exposed to HRP and Mg++ for up to 16 h show little tracer uptake into vesicles. Nor is the decrease likely to the due to loss of HRP enzyme activity; HRP is very stable in solution. During the chases there is a striking accumulation of HRP in perikarya that is far more extensive in cultures initially exposed to tracer with strychnine than 10 mM Mg++ regardless of chase conditions. Much of the tracer ends up in large dense bodies. These findings suggest that synaptic vesicle membrane turnover involves retrograde axonal transport of membrane to neuronal perikarya for further processing, including lysosomal degradation. The more rapid (4-8 h) loss of tracer-containing vesicles with strychnine may reflect vesicle membrane reutilization for exocytosis.  相似文献   

11.
The submicroscopic organization of the rod and cone synapses of the albino rabbit has been investigated with the use of the electron microscope. The most common rod synapse consists of an enlarged expansion of the rod fiber (the so called spherule) into which the dendritic postsynaptic fiber of the bipolar cell penetrates and digitates. The membrane surrounding the terminal consists of a double layer, the external of which is interpreted as belonging to the intervening glial cells. The synaptic membrane has a pre- and a postsynaptic layer with a total thickness of 180 to 300 A. The presynaptic layer is frequently denser and is intimately associated with the adjacent synaptic vesicles. The synaptic membrane shows processes constituted by foldings of the presynaptic layer. The entire spherule is filled with synaptic vesicles varying in diameter between 200 and 650 A with a mean of 386 A. In addition, the spherule contains a few large vacuoles near the rod fiber, interpreted as endoplasmic reticulum, and a matrix in which with high resolution a fine filamentous material can be observed. The postsynaptic fiber is homogeneous and usually does not show synaptic vesicles. In animals maintained in complete darkness for 24 hours vesicles appear to accumulate near the synaptic membrane and its processes. After 9 days there is a sharp decrease in size of the synaptic vesicles. A special rod synapse in which the dendritic postsynaptic expansion penetrates directly into the rod cell body has been identified. In line with Cajal's classification this type of synapse could be considered as a somatodendritic one. The cone synapse has a much larger terminal with a more complex relationship with the postsynaptic fiber. However, the same components recognized in the rod synapse can be observed. In animals maintained for 9 days in complete darkness there is also a considerable diminution in size of the synaptic vesicles.  相似文献   

12.
Summary Horseradish peroxidase (HRP) was introduced directly into the cerebral cortex of adult rats, which were allowed to survive for 60 min before perfusion fixation. After the tissue had been incubated to demonstrate HRP at the LM and EM levels, blocks of cortical tissue were taken at varying distances from the injection site. These eight blocks of tissue constituted a time sequence for HRP diffusion.Qualitative examination of the presynaptic terminals showed that the most commonly encountered profiles are the plain synaptic vesicles, many of which accumulate tracer. In some terminals labelled vesicles are lined-up in tubular fashion. Other profiles commonly labelled are coated vesicles, tubular and vacuolar cisternae, and plain and coated pinocytotic vesicles.Quantitative analyses based on the number of terminals containing labelled profiles demonstrate an early rise in the rate of labelling of both plain synaptic vesicles and coated vesicles, after which synaptic vesicle labelling rises slowly towards a plateau. By contrast, there is a late parallel increase in the rate of labelling of coated vesicles and cisternae. A more detailed analysis, based on the actual numbers of labelled and total profiles within each presynaptic terminal, highlight early and late periods of rapid labelling for plain synaptic vesicles, coated vesicles and cisternae. A further aspect of HRP incorporation studied, concerns its uptake into four delineated regions of the presynaptic terminal.Our data indicate that membrane uptake into the presynaptic terminal is accomplished mainly via coated vesicles, although plain synaptic vesicles may also be involved. Coated vesicles, in turn, appear to give rise directly to plain synaptic vesicles, with some coalescing to produce vacuolar cisternae. The latter are involved in a two-way interchange of membrane with tubular cisternae, plain synaptic vesicles and coated vesicles. An additional source of plain synaptic vesicles are the tubular cisternae. Exocytosis of plain synaptic vesicles constitutes the mechanism by which transmitter is released from the presynaptic terminal.Supported by the Nuffield Foundation. We are grateful to Mr. M. Austin for help with the photography  相似文献   

13.
Alterations produced by iodoacetate in visual cells have been studied under the electron microscope. Lesions of the outer segments of the rods are visible as early as 3 hours after a single injection of 20 mg. iodoacetate per kg. body weight. After 6 hours the changes are more marked and consist then of disorganization, vesiculation, and lysis of the rod sacs. The inner segments of most rod cells show swelling and vacuolization of the matrix, the endoplasmic reticulum, and the Golgi complex. The mitochondria of the ellipsoid show a tendency to disintegrate. In some inner segments the changes consist primarily in an increase in density of the matrix and deposition of a granular material. The rod synapses are also affected, showing lysis of the synaptic vesicles and alterations of the synaptic membrane. With a second injection of 20 mg. iodoacetate per kg. body weight, all these changes become more marked and lead to complete destruction of the rod cells. The cones seem more resistant than the rods. A single injection produces no visible changes in the outer or inner segments of the cones. At cone synapses, however, there are changes consisting of fusion of synaptic vesicles and other membranous material to form large concentric membranes characteristic of myelin figures. A second dose of the drug causes complete destruction of the cone cells. All these, and other submicroscopic changes, are discussed in relation to various hypotheses put forward to explain the mode of action of iodoacetate on visual cells. The pronounced alterations of submicroscopic intracellular membranes suggest that the locus of action of iodoacetate may be a component widely dispersed throughout the visual cells and related, in some way, to the maintenance of these lipoprotein structures.  相似文献   

14.
The presence of unique proteins in synaptic vesicles of neurons suggests selective targeting during vesicle formation. Endocrine, but not other cells, also express synaptic vesicle membrane proteins and target them selectively to small intracellular vesicles. We show that the rat pheochromocytoma cell line, PC12, has a population of small vesicles with sedimentation and density properties very similar to those of rat brain synaptic vesicles. When synaptophysin is expressed in nonneuronal cells, it is found in intracellular organelles that are not the size of synaptic vesicles. The major protein in the small vesicles isolated from PC12 cells is found to be synaptophysin, which is also the major protein in rat brain vesicles. At least two of the minor proteins in the small vesicles are also known synaptic vesicle membrane proteins. Synaptic vesicle-like structures in PC12 cells can be shown to take up an exogenous bulk phase marker, HRP. Their proteins, including synaptophysin, are labeled if the cells are surface labeled and subsequently warmed. Although the PC12 vesicles can arise by endocytosis, they seem to exclude the receptor-mediated endocytosis marker, transferrin. We conclude that PC12 cells contain synaptic vesicle-like structures that resemble authentic synaptic vesicles in physical properties, protein composition and endocytotic origin.  相似文献   

15.
We have studied the rod cells of retinas of Rana pipiens by phosphatase cytochemistry and immunocytochemistry. We find that the Golgi apparatus of these cells, although different in its intracellular distribution from that of other neurons, has a cis-trans organization like that of other neurons as regards morphological features and the distribution of phosphatase activities. Antibodies against opsin bind to several sacs of the rod Golgi apparatus, especially those at the trans side of the Golgi stack. This suggests that Golgi involvement in the packaging of opsin for eventual delivery to the photoreceptive outer segments of the cell involves passage through trans Golgi systems. Proteins destined for the opposite end of the cell--the presynaptic terminal--also seem to pass through trans Golgi systems, as is indicated both by immunocytochemical localization of the synaptic vesicle protein p38 (synaptophysin) and by the presence of thiamine pyrophosphatase activity in some of the synaptic vesicles. Our findings suggest that sorting of membrane proteins destined for opposite ends of the photoreceptor takes place in systems at or near the trans Golgi face.  相似文献   

16.
本文应用X射线能谱分析结合电镜技术研究了钙离子在青蛙交感神经节神经元内的分布及其在茶碱作用下分布的变化.实验结果表明在组织样品的电子致密沉积物EDD中含有钙离子成分.在青蛙交感神经节突触后神经元中,包含钙离子的EDD存在于质膜、亚表面池及线粒体中;在突触前神经末梢中,突触小泡的膜上也可观察到EDD.在茶碱作用下,交感神经节神经元的质膜、线粒体中的EDD大大地减少;在亚表面池中则没有或很少观察到EDD;突触前末梢中的突触小泡明显地趋向聚集,在突触小泡之间的连接处频繁地出现EDD.本文根据实验结果讨论了茶碱可能促使钙离子从交感神经元的上述部位中释放出来,并认为质膜、亚表面池和线粒体是细胞内钙离子的贮存部位,而亚表面池可能是主要的贮存释放部位.突触前神经末梢内形态上的变化可能与神经递质释放的机理有关.  相似文献   

17.
After synaptic vesicles fuse with the plasma membrane and release their contents, vesicle membrane proteins recycle by endocytosis and are targeted to newly formed synaptic vesicles. The membrane traffic of an epitope-tagged form of VAMP-2 (VAMP-TAg) was observed in transfected cells to identify sequence requirements for recycling of a synaptic vesicle membrane protein. In the neuroendocrine PC12 cell line VAMP-TAg is found not only in synaptic vesicles, but also in endosomes and on the plasma membrane. Endocytosis of VAMP-TAg is a rapid and saturable process. At high expression levels VAMP-TAg accumulates at the cell surface. Rapid endocytosis of VAMP-TAg also occurs in transfected CHO cells and is therefore independent of other synaptic proteins. The majority of the measured endocytosis is not directly into synaptic vesicles since mutations in VAMP-TAg that enhance synaptic vesicle targeting did not affect endocytosis. Nonetheless, mutations that inhibited synaptic vesicle targeting, in particular replacement of methionine-46 by alanine, inhibited endocytosis by 85% in PC12 cells and by 35% in CHO cells. These results demonstrate that the synaptic vesicle targeting signal is also used for endocytosis and can be recognized in cells lacking synaptic vesicles.  相似文献   

18.
Cones are connected to bipolar cells connected to rods by processes extending laterally from the cone terminals (Sjöstrand, 1958). The cone connections have been studied further in the rabbit retina. Structurally these connections are typical synaptic connections. It can be deduced that these connections must affect the on responses of bipolar cells connected to rods in such a way that spatial brightness contrast is enhanced. The connections raise the threshold for rod vision and slow down the changes in the membrane potential of on-bipolar cells. These effects offer an explanation for the duplicity of vision.  相似文献   

19.
Tetanus neurotoxin and botulinum neurotoxins are the causative agents of tetanus and botulism. They block the release of neurotransmitters from synaptic vesicles in susceptible animals and man and act in nanogram quantities because of their ability to specifically attack motoneurons. They developed an ingenious strategy to enter neurons. This involves a concentration step via complex polysialo gangliosides at the plasma membrane and the uptake and ride in recycling synaptic vesicles initiated by binding to a specific protein receptor. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had misused before to enter their target cells, via specific cleavage of protein core components of the cellular membrane fusion machinery. The uptake of four out of seven known botulinum neurotoxins into synaptic vesicles has been demonstrated to rely on binding to intravesicular segments of the synaptic vesicle proteins synaptotagmin or synaptic vesicle protein 2. This review summarizes the present knowledge about the cell receptor molecules and the mode of toxin-receptor interaction that enables the toxins' sophisticated access to their site of action.  相似文献   

20.
The paper discusses functional and molecular aspects of the synaptic vesicle membrane during its life cycle. The distribution of the synaptic vesicle membrane compartment in an entire cholinergic neuron is monitored using colloidal gold labelling and a monoclonal antibody against the synaptic vesicle membrane protein SV2. This provides new insights concerning vesicle origin and fate in the various compartments of the neuron. A new synaptic vesicle membrane protein (svp25) of Mr 25,000 with properties similar to synaptophysin as well as a synaptic vesicle binding phosphoprotein of the presynaptic membrane (Mr 92,000) likely to be involved in vesicle exocytosis are described. The membrane compartment recycled on induced transmitter release contains synaptic vesicle but not plasma membrane markers and encloses both newly synthesized transmitter and a sample of extracellular medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号