首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two distinct variants of erythrocyte spectrin βIV domain   总被引:15,自引:7,他引:8  
Summary Thirty-nine Turkish phenylketonuria (PKU) families were investigated for their DNA haplotypes at the phenylalanine hydroxylase (PAH) locus. There was a threefold higher incidence of consanguinity in the population studied compared with the general Turkish population. The PAH DNA haplotype 6 was found to be almost exclusively associated not only with the mutant PAH genes but also with the classic phenotype in 39% of the Turkish patients. This haplotype was of no importance in northern European populations. The two DNA haplotypes (1 and 4) that were almost equally frequent among the normal and the mutant PAH genes in northern European populations show virtually the same distribution in Turkish individuals. In all populations studied, these haplotypes are associated with different phenotypes.  相似文献   

2.
The mutation S349P in exon 10 of the phenylalanine hydroxylase (PAH) gene was identified in one Norwegian and one Polish phenylketonuria (PKU) allele on a haplotype 1.7 background. This missense mutation in PAH codon 349 is a T to C transition in cDNA position 1267. This mutation has been reported both on haplotype 1 and 4, suggesting recurrent mutation. In two different expression systems, the pET and the pMAL systems of Escherichia coli, it was shown that the S349P mutation, introduced by site directed mutagenesis, results in complete loss of enzymatic activity. Thus, protein instability alone does not seem to be the direct cause of the lack of activity of this PKU mutation as previously reported.We have identified mutations in the PAH gene of 118 PKU patients in Norway. To obtain information about how the different mutations affect the catalytic properties of the PAH enzyme we have used two prokaryotic expression systems.We detected the mutation S349P (Forrest et al. 1991) in one Norwegian patient and one of Polish ancestry. This mutation has previously been reported on haplotype 4 in North-African Jews (Weinstein et al. 1993), and on haplotype 1 in French-Canadians (John et al. 1992) and in Danes (Guldberg et al. 1993a). Here we present gene expression data showing that the recombinant mutant enzyme has no measurable residual catalytic activity.  相似文献   

3.
DNA haplotype analyses of patients with hyperphenylalaninemia.   总被引:1,自引:1,他引:0       下载免费PDF全文
Linkage analysis of phenylketonurics has shown a strong association between the DNA haplotype at the phenylalanine hydroxylase (PAH) locus and phenylketonuria (PKU). Similarly, a genetic linkage between less severe forms of hyperphenylalaninemia (HPA) and the PAH locus has been suggested. In the present study we analyzed this linkage in more detail. Haplotypes at the PAH locus were determined for 19 individuals with moderately elevated plasma phenylalanine and normal urinary neopterin/biopterin ratios. Fourteen of these individuals had plasma phenylalanine levels of 4-10 mg/dl (mild HPA), and the other five had plasma phenylalanine levels of 10-19 mg/dl (atypical PKU). Thirteen of the 15 HPA families consisted of an affected child and at least one other sibling. Elevated plasma phenylalanine was seen to genetically segregate with specific PAH alleles in each family. Summation of the LOD scores for both categories of moderate plasma phenylalanine elevation gave a maximum value of 3.556 at theta = 0. At theta = 0 this gives a probability of linkage between the PAH locus and the locus for moderate phenylalanine elevations that is approximately 3,600:1. None of the alleles segregating with either mild HPA or atypical PKU were of haplotype 2 or 3, and 13/20 were of types 1 or 4. This is in agreement with the most deleterious mutations being on haplotypes 2 and 3 and with the less severe mutations being on haplotypes 1 and 4. chi 2 Analyses indicated no statistically significant correlation between HPA and a particular haplotype or restriction-enzyme site.  相似文献   

4.
5.
We investigated the frequency, origin, and molecular basis of phenylketonuria (PKU) in U.S. blacks. On the basis of 10 years of Maryland newborn-screening data, we found the frequency to be 1/50,000, or one-third that in whites. We performed haplotype analysis of the phenylalanine hydroxylase (PAH) gene of 36 U.S. blacks, 16 from individuals with classical PKU and 20 from controls. In blacks, 20% of wild-type PAH alleles have a common Caucasian haplotype (i.e., haplotype 1), whereas 80% had a variety of haplotypes, all rare in Caucasians and Asians. One of these, haplotype 15, accounted for a large fraction (30%). Among black mutant PAH alleles, 20% have a haplotype (i.e., either haplotype 1 or haplotype 4) common in Caucasians; 40% have a haplotype rare in Caucasians and Asians, and 40% have one of two previously undescribed haplotypes. Both can be derived from known haplotypes by a single event. One of these haplotypes is characterized by a new MspI restriction site, located in intron 8, which was present in five of 16 black mutant alleles but was not present in 60 U.S. black control, 20 U.S. Caucasian control, or 20 Caucasian mutant PAH alleles. Sequence analysis of DNA from a single individual, homozygous for the new MspI associated haplotype, shows homozygosity for a C----T transition at nucleotide 896 in exon 7 of the PAH cDNA, resulting in the conversion of leucine 255 to serine (L255S).  相似文献   

6.
Phenylalanine hydroxylase (PAH) deficiency is caused by mutations in the PAH gene (12q22-q24) resulting in a primary deficiency of the PAH enzyme activity, intolerance to the dietary intake of phenylalanine (Phe) and production of the phenylketonuria (PKU) disease. To date there have been no reports on the molecular analysis of PKU in Iranian population. In this study, the states of the PKU disease in terms of prevalence and mutation spectrum among patients reside in the institutions for mentally retarded in Isfahan was investigated. In the first step, 611 out of 1541 patients with PKU phenotype or severe mental retardation were screened for the PKU disease using the Guthrie bacterial inhibition assay (GBIA) followed by HPLC. Among the patients screened 34 (5.56%) were found positive with abnormal serum Phe of above 7mg/dl. In the next step, the presence of 18 common mutations of the PAH gene in 26 of the patients with classical PKU (serum Phe above 20mg/dl) was investigated, using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Of the 52 independent mutant alleles that were analyzed, 34 (65.38%) were genotyped showing 8 mutations as follows: R252W (15.38%), Q232Q (13.46%), R261Q (7.69%), delL364 (7.69%), IVS10-11g>a (5.77%), L333F (5.77%), V245V (5.77%) and S67P (3.85%). The results from this study may serve as a reference to analyze the PKU mutations in other part of Iran, and to establish diagnostic tests for carrier detection and prenatal diagnosis of the PKU disease in Iranian population.  相似文献   

7.
Phenylketonuria (PKU) is an autosomal recessive disease due to deficiency of a hepatic enzyme, phenylalanine hydroxylase (PAH). The absence of PAH activity results in typical PKU while persistence of a residual enzyme activity gives rise to variant forms of the disease. We report here a 3-base pair in-frame deletion of the PAH gene (delta 194) in a mild variant, with markedly reduced affinity of the enzyme for phenylalanine (Km = 160 nM), and we provide functional evidence for responsibility of the deletion in the mutant phenotype. Since the deletion was located in the third exon of the gene, which presents no homology with other hydroxylases, we suggest that exon 3 is involved in the specificity of the enzyme for phenylalanine. Finally, since none of the 98 PKU patients tested were found to carry this particular deletion, our study suggests that this molecular event probably occurred recently on the background of a haplotype 2 gene in Portugal.  相似文献   

8.
DNA polymorphisms at the phenylalanine hydroxylase (PAH) locus have proved highly effective in linkage diagnosis of phenylketonuria (PKU) in Caucasian families. More than 10 RFLP sites have been reported within the PAH structural locus in Caucasians. With information from affected and unaffected offspring in PKU families it is often possible to reconstruct complete RFLP haplotypes in parents and to use these haplotypes to follow the segregation of PKU within families and to determine the distribution of PKU chromosomes within populations. To establish the utility of these RFLPs in characterizing Asian families with PKU, we typed eight DNA sites in 21 Chinese families and 12 Japanese families with classical PKU. The eight RFLPs were chosen for their informativeness in Caucasians. From these families we reconstructed a total of 91 complete PAH haplotypes, 44 from non-PKU chromosomes and 47 from PKU-bearing chromosomes. Although all eight marker sites are polymorphic in both Chinese and Japanese, there is much less haplotypic variation in Asians than in Caucasians. In particular, one haplotype alone, haplotype 4, accounts for more than 77% of non-PKU chromosomes and for more than 80% of PKU-bearing chromosomes. Haplotype 4 is also relatively common in Caucasians. The next most common Asian haplotype is 10 times less frequent than haplotype 4. By contrast, in many Caucasian populations the sum of the frequencies of the five most common haplotypes is still less than 80%, and several of the most common haplotypes are equally frequent. Even though the extent of haplotypic variation in Asians is severely limited, the few haplotypes that are found often differ at a number of RFLP sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Recurrent mutation in the human phenylalanine hydroxylase gene.   总被引:10,自引:6,他引:4       下载免费PDF全文
We report the identification of a missense mutation of Glu280 to Lys280 in the phenylalanine hydroxylase (PAH) gene of a phenylketonuria (PKU) patient in Denmark. The mutation is associated with haplotype 1 of the PAH gene in this population. This mutation has previously been found in North Africa, where it is in linkage disequilibrium with haplotype 38. While it is conceivable that this mutation could have been transferred from one haplotype background to another by a double crossover or gene conversion event, the fact that the mutation is exclusively associated with the two different haplotypes in the two distinct populations supports the hypothesis that these two PKU alleles are the result of recurrent mutations in the human PAH gene. Furthermore, since the site of mutation involves a CpG dinucleotide, they may represent hot spots for mutation in the human PAH locus.  相似文献   

10.
We report missense mutations associated with haplotype 1 and haplotype 4 alleles of the human phenylalanine hydroxylase (PAH) gene. Individual exon-containing regions were amplified by polymerase chain reaction from genomic DNA of a PKU patient who was a haplotype 1/4 compound heterozygote. The amplified DNA fragments were subcloned into M13 for sequence analysis. Missense mutations were observed in exons 5 and 7, resulting in the substitution of Arg by Gln at residues 158 and 261 of the enzyme, respectively. Expression analysis in heterozygous mammalian cells after site-directed mutagenesis demonstrated that the Arg158-to-Gln158 mutation is a PKU mutation, whereas the Arg261-to-Gln261 mutation is apparently silent in the assay system. Hybridization analysis using allele-specific oligonucleotide probes demonstrated that the Arg158-to-Gln158 mutation is present in two of six mutant haplotype 4 alleles among the Swiss and constitutes about 40% of all mutant haplotype 4 alleles in the European population. The mutation is not present in normal alleles or in any mutant alleles of other haplotypes. The results provide conclusive evidence that there is linkage disequilibrium between mutation and haplotype in the PAH gene and that multiple mutations have occurred in the PAH gene of a prevalent haplotype among Caucasians.  相似文献   

11.
Two missense mutations have been identified in the phenylalanine hydroxylase (PAH) genes of an Italian phenylketonuria (PKU) patient. Both mutations occurred in exon 7 of the PAH gene, resulting in the substitution of Trp for Arg at amino acid 252 (R252W) and of Leu for Pro (P281L) at amino acid 281 of the protein. Expression vectors containing either the normal human PAH cDNA or mutant cDNAs were constructed and transfected into cultured mammalian cells. Extracts from cells transfected with either mutant construct showed negligible enzyme activity and undetectable levels of immunoreactive PAH protein as compared to the normal construct. These results are compatible with the severe classical PKU phenotype observed in this patient. Population genetic studies in the Italian population revealed that both the R252W and the P281L mutations are in linkage disequilibrium with mutant restriction fragment length polymorphism (RFLP) haplotype 1, which is the most prevalent RFLP haplotype in this population. The R252W mutation is present in 10% and the P281L mutation is present in 20% of haplotype 1 mutant chromosomes. These mutations are both very rare among other European populations, suggesting a Mediterranean origin for these mutant chromosomes.  相似文献   

12.
Three novel missense mutations have been identified in the phenylalanine hydroxylase (PAH) genes of Chinese individuals afflicted with various degrees of phenylketonuria (PKU). A T-to-C transition was observed in exon 5 of the gene, resulting in the substitution of Phe161 by Ser161. Two substitutions, G-to-T and T-to-G, were observed in exon 7, resulting in the substitution of Gly247 by Val247 and Leu255 by Val255, respectively. Expression analysis demonstrated that these mutant proteins produced between 0 and 15% of normal PAH enzyme activity. Population screening of a Chinese sample population indicates that these mutations are quite rare, together accounting for only about 4% of all PKU alleles among the Chinese. The P161S and G247V mutations were each present on a single PAH RFLP haplotype 4 chromosome in patients form Northern China, while the L255V mutation was present on chromosomes of both haplotypes 18 and 21 in patients from Southern China. These results suggest that the remaining 30% of uncharacterized PKU alleles in the Chinese population may bear a large number of relatively rare PAH mutations.  相似文献   

13.
Three novel mutations have been identified in the phenylalanine hydroxylase (PAH) genes of Chinese classical phenylketonuria (PKU) patients. Two of these substitutions (W326X and Y356X) result in the generation of a premature stop codon, while the third (IVS-7nt2) alters an invariant dinucleotide splicing signal. These mutations together account for about 10% of all PKU alleles in the Chinese population. The W326X mutation is associated with PAH RFLP haplotype 4, the most common haplotype in Orientals, while the IVS-7nt2 mutation occurs once on a haplotype 7 chromosome. The Y356X mutation is associated with multiple haplotypes, possibly due to crossover, gene conversion, or recurrent mutation.  相似文献   

14.
RFLPs in the phenylalanine hydroxylase (PAH) gene locus were determined in 47 Norwegian nuclear families that had at least one child with phenylketonuria (PKU). The PKU haplotype distribution differed somewhat from that of other European populations. Mutant haplotype 7 is relatively rare in other populations but constituted 20% of all mutant haplotypes in Norway. In 14 of the 17 mutant haplotypes 7, a previously unreported deletion of the BamHI restriction site in exon 7 of the PAH gene was observed. The abrogation of the BamHI site was shown to be due to a G-to-T transversion, changing Gly 272 to Ter 272 in exon 7 of the gene, thus directly identifying the PKU mutation. Unlike the families of the other PKU patients, the families with this mutation clustered along the southeastern coast of Norway, suggesting a founder effect for this mutation.  相似文献   

15.
Summary A deletion of a single base in codon 55 (exon 2) of the phenylalanine hydroxylase (PAH) gene has been identified by direct DNA sequencing of 94 phenyl-ketonuria (PKU) chromosomes. This mutation alters the reading frame so that a stop signal (TAA) is generated in codon 60 of the PAH gene. Haplotype analysis revealed that all PKU alleles showing the codon 55 frameshift mutation exhibited haplotype 1. In our panel of DNA probes 13% of all mutant haplotype 1 alleles carry this particular mutation. Patients who were compound heterozygotes for this deletion and R408W in exon 12, or the splice mutation in intron 12, were affected by severe PKU. Thus, the clinical data provide additional evidence that haplotype 1 PKU alleles carry molecular defects which confer a null phenotype. In addition, we were able to show that the newly detected mutation occurs on alleles of different ethnic background.  相似文献   

16.
Phenylketonuria: distribution of DNA diagnostic patterns in German families   总被引:11,自引:0,他引:11  
Summary The distribution of DNA haplotype constellations within the phenylalanine hydroxylase (PAH) gene was investigated in 44 German families affected with phenylketonuria (PKU). The haplotype frequencies differed significantly from those observed in a Danish population. Furthermore, ten haplotypes were identified in addition to the 12 previously described. In one of ten PKU alleles linked to haplotype 3, the G to A transition at the 5 splice donor site of intron 12 could not be confirmed with the use of synthetic DNA probes. According to these data, which are still limited, carrier testing and prenatal diagnosis should be possible in 70% of individuals at risk in the German population.  相似文献   

17.
Nonphenylketonuria hyperphenylalaninemia (non-PKU HPA) is defined as phenylalanine hydroxylase (PAH) deficiency with blood phenylalanine levels below 600 mumol/liter (i.e., within the therapeutic range) on a normal dietary intake. Haplotype analysis at the PAH locus was performed in 17 Danish families with non-PKU HPA, revealing compound heterozygosity in all individuals. By allele-specific oligonucleotide (ASO) probing for common PKU mutations we found 12 of 17 non-PKU HPA children with a PKU allele on one chromosome. To identify molecular lesions in the second allele, individual exons were amplified by polymerase chain reaction and screened for mutations by single-strand conformation polymorphism. Two new missense mutations were identified. Three children had inherited a G-to-A transition at codon 415 in exon 12 of the PAH gene, resulting in the substitution of asparagine for aspartate, whereas one child possessed an A-to-G transition at codon 306 in exon 9, causing the replacement of an isoleucine by a valine in the enzyme. It is further demonstrated that the identified mutations have less impact on the heterozygote's ability to hydroxylate phenylalanine to tyrosine compared to the parents carrying a PKU mutation. The combined effect on PAH activity explains the non-PKU HPA phenotype of the child. The present observations that PKU mutations in combination with other mutations result in the non-PKU HPA phenotype and that particular mutation-restriction fragment length polymorphism haplotype combinations are associated with this phenotype offer the possibility of distinguishing PKU patients from non-PKU individuals by means of molecular analysis of the hyperphenylalaninemic neonate and, consequently, of determining whether a newborn child requires dietary treatment.  相似文献   

18.
PAH 399 GTA(Val)→GTT(Val), a new silent mutation found in the Chinese   总被引:1,自引:1,他引:0  
Summary A silent mutation or sequence polymorphism, an A to T substitution at codon 399 in exon 11 of the phenylalanine hydroxylase (PAH) gene has been identified by DNA sequence analysis in the Chinese. The frequencies of this new mutation in normal and abnormal (phenylketonuria; PKU) genes are 0.005 and 0.09, respectively, based on the analyses of 100 apparently normal individuals and 39 PKU patients, as demonstrated by DNA amplification with polymerase chain reaction (PCR) and oligonucleotide hybridization methods. The results suggest that there is linkage disequilibrium between this polymorphism and PKU mutations in the PAH gene; approximately 10% of defect PAH alleles in the Chinese population may be identified with this sequence polymorphic marker.  相似文献   

19.
Novel PKU mutation on haplotype 2 in French-Canadians.   总被引:17,自引:11,他引:6       下载免费PDF全文
We analyzed DNA from nine French-Canadian probands from eastern Quebec province; all had hyperphenylalaninemia (phenylketonuria [PKU] or non-PKU forms) caused by mutations at the phenylalanine hydroxylase locus. Analysis of RFLP haplotypes and mutations revealed a novel mutation, an A-to-G transition (met----val) in codon 1 (the translation-initiation codon). It occurred on 5 of the 18 mutant chromosomes and was associated each time with haplotype 2. A proband homozygous for this mutation had the PKU phenotype. In other probands, the codon 1 mutation was inherited once with the splice junction mutation in exon 12 (on haplotype 3), conferring PKU, and was inherited twice with a mutation on haplotype 1, conferring PKU in one proband and non-PKU hyperphenylalaninemia in the other. The other five probands carried mutations, conferring PKU, on the following haplotype combinations: 1/3 (twice), 1/9, 3/4, and 1/1. The mutations on haplotypes 1, 4, and 9 are not yet characterized. This preliminary study reveals a novel PKU mutation and considerable genetic heterogeneity at the phenylalanine hydroxylase locus in French-Canadians.  相似文献   

20.
Two missense mutations in the phenylalanine hydroxylase (PAH) genes of Orientals with phenylketonuria (PKU) have been identified. A G-to-A transition in exon 7 of the gene results in the substitution of Gln243 for Arg243 (R243Q) and accounts for 18% of all PKU chromosomes among Chinese. An A-to-G transition in exon 6 of the gene results in the substitution of Cys204 for Tyr204 (Y204C) and identifies about 13 and 5% of all PKU chromosomes in the Chinese and Japanese populations, respectively. The R243Q construct produced less than 10% of normal PAH activity in in vitro expression analysis in a eukaryotic cell system, and patients homozygous for this substitution exhibit a severe clinical phenotype. These results are consistent with previous findings in this expression system. The Y204C construct, however, produced near normal levels of PAH enzyme activity and immunoreactivity in this in vitro expression system. Because this substitution is present only on PKU chromosomes, it is a valuable marker for identifying the corresponding mutant allele for carrier screening of PKU. With the characterization of these two substitutions, about 60% of PKU alleles in China can now be identified. The continuing search for additional PKU mutations will permit effective carrier screening and prenatal gene diagnosis of PKU in East Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号