首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Action of a mammalian AP-endonuclease on DNAs of defined sequences.   总被引:2,自引:2,他引:0       下载免费PDF全文
An apurinic/apyrimidinic (AP) specific endonuclease from mouse plasmacytoma cells (line MPC-11), was observed to cleave apurinic sites in oligonucleotides 9, 11, 12, 39 and 40 nucleotides in length. However, the enzyme failed to cleave AP-sites in two oligonucleotides 7 nucleotides in length. The maximum rates of digestion observed on these short single-stranded DNA (ssDNA) fragments were approximately 1/30 of the rates observed on double-stranded DNA (dsDNA). In studies using the Maxam-Gilbert DNA sequencing analysis, apurinic sites in purine-rich regions were preferentially cleaved in dsDNA but not in ssDNA, indicating that the enzyme has a sequence preference on dsDNA. These results suggest that some sites on DNA might be more efficiently repaired than others.  相似文献   

2.
Ilina  E. S.  Lavrik  O. I.  Khodyreva  S. N. 《Molecular Biology》2021,55(2):234-240
Molecular Biology - One of the most common DNA lesions is the appearance of apurinic/apyrimidinic (AP-) sites. The main repair pathway for AP sites is initiated by apurinic/apyrimidinic...  相似文献   

3.
An activity that binds preferentially to depurinated DNA and inserts purines into those sites was partially purified from Drosophila melanogaster embryos. The protein has a sedimentation coefficient of 4.9 S and is devoid of AP (apurinic/apyrimidinic) endonuclease activity. Upon incorporation of purines into apurinic DNA, the number of alkali-labile sites decreases, thus establishing the conversion of depurinated sites into normal nucleotides. The activity requires K+, and is totally inhibited by caffeine or EDTA. Guanine is specifically incorporated into partially depurinated poly(dG-dC) and adenine is specifically incorporated into poly(dA-dT), thus demonstrating the apparent template specificity of the enzyme.  相似文献   

4.
An apurinic/apyrimidinic (AP) site is one of the most abundant lesions spontaneously generated in living cells and is also a reaction intermediate in base excision repair. In higher eukaryotes, there are two alternative pathways for base excision repair: a DNA polymerase beta-dependent pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway. Here we have reconstituted PCNA-dependent repair of AP sites with six purified human proteins: AP endonuclease, replication factor C, PCNA, flap endonuclease 1 (FEN1), DNA polymerase delta, and DNA ligase I. The length of nucleotides replaced during the repair reaction (patch size) was predominantly two nucleotides, although longer patches of up to seven nucleotides could be detected. Neither replication protein A nor Ku70/80 enhanced the repair activity in this system. Disruption of the PCNA-binding site of either FEN1 or DNA ligase I significantly reduced efficiency of AP site repair but did not affect repair patch size.  相似文献   

5.
6.
K K Bose  K Tatsumi  B S Strauss 《Biochemistry》1980,19(21):4761-4766
Neocarzinostatin (NCS) induces alkali-labile sites in DNA which are stabilized by NaBH4 reduction. The stabilized sites are sensitive to an AP endonuclease from human lymphoma cells. NCS-induced degradation of supercoiled Col E1 DNA proceeds in stepwise fashion with apurinic/apyrimidinic (AP) sites as intermediates. Degradation is increased when reaction occurs in the presence of AP endonuclease, and DNA reacted with NCS can be shown to have numerous AP endonuclease sensitive sites.  相似文献   

7.
A dot-blot method for quantification of apurinic/apyrimidinic (AP) sites in genomic DNA (calf thymus DNA) is described using an avidin-modified glass slip and biotinylated liposomes containing sulforhodamine B as a fluorescence marker. Aldehyde reactive probe (ARP)-tagged DNA was found to be strongly adsorbed on an avidin slip, even if treated with ethanolamine and biotin, with an efficiency of 51% due to the positive surface charge of avidin, and unbound ARP was easily washed out of the surface with Milli-Q water. In the assay protocol, calf thymus DNA containing AP sites is reacted with ARP in solution and immobilized on an ethanolamine- and biotin-treated avidin slip (EAB-avidin slip), followed by incubation with streptavidin. The AP sites were finally quantified with biotinylated liposomes containing 1.5 mM sulforhodamine B as a fluorescence marker. The mean fluorescence intensity over the surface of the slip was an analytically relevant measure of the amount of AP sites in calf thymus DNA. By using the dot-blot assay, 1-5 AP sites per 10(4) nucleotides in 5 and 100 ng of DNA were quantified. The current dot-blot method has potential for quantification of AP sites in genomic DNA at a level of several nanograms.  相似文献   

8.
A simple and rapid method is described for the determination of AP (apurinic/apyrimidinic) sites in DNA. The method involves the reaction of [14C]methoxyamine with the aldehyde group present in the deoxyribose moiety after a base loss. Studies with alkylated-depurinated DNA and with uracil-containing polydeoxyribonucleotides depyrimidinated by uracil-DNA glycosylase show that methoxyamine reacts with both apurinic and apyrimidinic sites in a rapid and exhaustive way. Under standard conditions (30-min incubation with 5 mM methoxyamine at 37 degrees C, pH 7.2) untreated DNA is almost unreactive and the [14C]methoxyamine incorporation in DNA is proportional to the number of AP sites. Since the methoxyamine reaction is free from any degradative effect on DNA, AP sites may be estimated from a simple determination of the acid-insoluble radioactivity.  相似文献   

9.
The excision repair of DNA damaged by physical or chemical agents may produce either apurinic/apyrimidinic (AP) sites or single-strand breaks (SSB) in the DNA. Alkaline-sucrose gradient sedimentation and alkaline elution, techniques generally used for the study of DNA repair which depend upon high pH to denature the DNA, cannot differentiate between these possibilities. A simple method for the quantitative measurement of SSB in DNA which leaves any AP sites intact is presented. This method relies upon the separation by size of the fragments resulting from the denaturation of the DNA under neutral conditions by sedimentation through gradients of sucrose in formamide. By combining the use of both formamide- and alkaline-sucrose sedimentation methods, we can quantify both AP sites and SSB in DNA.  相似文献   

10.
A simple and rapid method is described for the determination of AP (apurinic/apyrimidinic) sites in DNA. The method involves the reaction of [14C]methoxyamine with the aldehyde group present in the deoxyribose moiety after a base loss. Studies with alkylated-depurinated DNA and with uracil-containing polydeoxyribonucleotides depyrimidinated by uracil-DNA glycosylase show that methoxyamine reacts with both apurinic and apyrimidinic sites in a rapid and exhaustive way. Under standard conditions (30-min incubation with 5 mM methoxyamine at 37°C, pH 7.2) untreated DNA is almost unreactive and the [14C]methoxyamine incorporation in DNA is proportional to the number of AP sites. Since the methoxyamine reaction is free from any degradative effect on DNA, AP sites may be estimated from a simple determination of the acid-insoluble radioactivity.  相似文献   

11.
G L Dianov  B R Jensen  M K Kenny  V A Bohr 《Biochemistry》1999,38(34):11021-11025
Base excision repair (BER) pathway is the major cellular process for removal of endogenous base lesions and apurinic/apyrimidinic (AP) sites in DNA. There are two base excision repair subpathways in mammalian cells, characterized by the number of nucleotides synthesized into the excision patch. They are the "single-nucleotide" (one nucleotide incorporated) and the "long-patch" (several nucleotides incorporated) BER pathways. Proliferating cell nuclear antigen (PCNA) is known to be an essential factor in long-patch base excision repair. We have studied the role of replication protein A (RPA) in PCNA-dependent, long-patch BER of AP sites in human cell extracts. PCNA and RPA were separated from the other BER proteins by fractionation of human whole-cell extract on a phosphocellulose column. The protein fraction PC-FII (phosphocellulose fraction II), which does not contain RPA and PCNA but otherwise contains all core BER proteins required for PCNA-dependent BER (AP endonuclease, DNA polymerases delta, beta and DNA ligase, and FEN1 endonuclease), had reduced ability to repair plasmid DNA containing AP sites. Purified PCNA or RPA, when added separately, could only partially restore the PC-FII repair activity of AP sites. However, additions of both proteins together greatly stimulated AP site repair by PC-FII. These results demonstrate a role for RPA in PCNA-dependent BER of AP sites.  相似文献   

12.
13.
The major apurinic/apyrimidinic (AP) endodeoxyribonuclease from rat liver chromatin, an enzyme specific for AP sites in DNA, cleaves the phosphodiester bridge which is the immediate neighbour of the AP site on its 5' side leaving 3'-hydroxyl and 5'-phosphate ends. In contrast with Escherichia coli endonuclease VI, this chromatin enzyme is inactive on reduced AP sites.  相似文献   

14.
K Tatsumi  K K Bose  K Ayres  B S Strauss 《Biochemistry》1980,19(21):4767-4772
Neocarzinostatin (NCS) induces repair in a xeroderma pigmentosum lymphoblastoid line deficient in the ability to repair DNA damage induced with (acetoxyacetyl-amino)fluorene. Repair was demonstrated by the induction of repair synthesis and by the disappearance of NCS-induced single-strand breaks and/or alkaline-labile sites in DNA. Estimation of NCS-induced repair patch size, based on the density shift induced in DNA by extensive shear after incubation of treated cells in medium with bromodeoxyuridine or by calculation from the extent of restoration of DNA sedimentation profiles in alkaline sucrose gradients and the amount of repair synthesis measured by the BND cellulose method, indicated that only a few nucleotides were inserted per repaired region. NCS-treated bacteriophage T7 DNA requires incubation with alkaline phosphatase to make it a substrate for DNA polymerase I. NCS-reacted T7 DNA, even after phosphatase treatment, is not a substrate for a DNA polymerase alpha obtained from human lymphoma cells. NCS-treated T7 DNA did serve as a substrate for the DNA polymerase alpha when incubated with an apurinic/apyrimidinic (AP) endonuclease with associated 5'-3'-exonuclease activity. The results suggest that NCS-induced AP sites could be intermediates for the in vivo repair synthesis.  相似文献   

15.
S Kanno  S Iwai  M Takao    A Yasui 《Nucleic acids research》1999,27(15):3096-3103
UV damage endonuclease (UVDE) initiates a novel form of excision repair by introducing a nick imme-diately 5" to UV-induced cyclobutane pyrimidine dimers or 6-4 photoproducts. Here, we report that apurinic/apyrimidinic (AP) sites are also nicked by Neurospora crassa and Schizosaccharomyces pombe UVDE. UVDE introduces a nick immediately 5" to the AP site leaving a 3"-OH and a 5"-phosphate AP. Apyrimidinic sites are more effectively nicked by UVDE than apurinic sites. UVDE also possesses 3"-repair activities for AP sites nicked by AP lyase and for 3"-phosphoglycolate produced by bleomycin. The Uvde gene introduced into Escherichia coli cells lacking two types of AP endonuclease, Exo III and Endo IV, gave the host cells resistance to methylmethane sulfonate and t-butyl hydroperoxide. We identified two AP endonuclease activities in S.pombe cell extracts. Besides cyclobutane pyrimidine dimers and 6-4 photoproducts, N. crassa UVDE also nicks Dewar photoproducts. Thus, UVDE is able to repair both of the major forms of DNA damage in living organisms: UV-induced DNA lesions and AP sites.  相似文献   

16.
Endonuclease IV is the archetype for a conserved apurinic/apyrimidinic (AP) endonuclease family that primes DNA repair synthesis by cleaving the DNA backbone 5' of AP sites. The crystal structures of Endonuclease IV and its AP-DNA complex at 1.02 and 1.55 A resolution reveal how an alpha8beta8 TIM barrel fold can bind dsDNA. Enzyme loops intercalate side chains at the abasic site, compress the DNA backbone, bend the DNA approximately 90 degrees, and promote double-nucleotide flipping to sequester the extrahelical AP site in an enzyme pocket that excludes undamaged nucleotides. These structures suggest three Zn2+ ions directly participate in phosphodiester bond cleavage and prompt hypotheses that double-nucleotide flipping and sharp bending by AP endonucleases provide exquisite damage specificity while aiding subsequent base excision repair pathway progression.  相似文献   

17.
Irradiation of DNA produces primary AP (apurinic of apyrimidinic) sites due to the loss of modified bases and secondary AP sites resulting from the destruction of deoxyribose. The aldehyde groups of the primary AP sites and of some secondary AP sites might be responsible for the formation of the crosslinks in irradiated DNA.  相似文献   

18.
To study the interaction of poly(ADP-ribose) polymerase 1 (PARP1) with apurinic/apyrimidinic sites (AP sites) within clustered damages, DNA duplexes were created that contained an AP site in one strand and one of its analogs situated opposite the AP site in the complementary strand. Residues of 3-hydroxy-2-hydroxymethyltetrahydrofuran (THF), diethylene glycol (DEG), and decane-1,10-diol (DD) were used. It is shown for the first time that apurinic/apyrimidinic endonuclease 1 (APE1) cleaves the DNA strands at the positions of DEG and DD residues, and this suggests these groups as AP site analogs. Insertion of DEG and DD residues opposite an AP site decreased the rate of AP site hydrolysis by APE1 similarly to the effect of the THF residue, which is a well-known analog of the AP site, and this allowed us to use such AP DNAs to imitate DNA with particular types of clustered damages. PARP1, isolated and in cell extracts, efficiently interacted with AP DNA with analogs of AP sites producing a Schiff base. PARP1 competes with APE1 upon interaction with AP DNAs, decreasing the level of its cross-linking with AP DNA, and inhibits hydrolysis of AP sites within AP DNAs containing DEG and THF residues. Using glutaraldehyde as a linking agent, APE1 is shown to considerably decrease the amount of AP DNA-bound PARP1 dimer, which is the catalytically active form of this enzyme. Autopoly(ADP-ribosyl)ation of PARP1 decreased its inhibitory effect. The possible involvement of PARP1 and its automodification in the regulation of AP site processing within particular clustered damages is discussed.  相似文献   

19.
This paper describes the use of methoxyamine to study the enzymatic reactions catalyzed by uracil-DNA glycosylase and by AP (apurinic/apyrimidinic) endodeoxyribonuclease isolated from mammalian cells. [14C]Methoxyamine permits one to follow the formation of AP sites in a uracil-containing polydeoxyribonucleotide incubated with calf thymus uracil-DNA glycosylase. The number of methoxyamine-reacted AP sites is equal to that of uracil released. Methoxyamine has no effect on the uracil-DNA glycosylase activity and may be added together with the enzyme in order to block the AP sites and prevent the degradation of the polynucleotide by the AP endonucleases that may be present in a crude preparation. Addition of methoxyamine to AP sites prevents not only the enzymatic hydrolysis of the adjacent phosphodiester bond but also the degradation of the polynucleotide by NaOH. This protective effect disappears after methoxyamine is removed by acetaldehyde.  相似文献   

20.
The aromatic amine 9-amino-ellipticine is a synthetic DNA intercalating compound derived from the antitumor agent ellipticine, which cleaves at very low doses DNA containing apurinic sites by beta-elimination through formation of a Schiff base. This compound has been shown to potentiate the cytotoxic effect of alkylating drugs, such as dimethyl sulfate, in E. coli through a mechanism involving apurinic sites. We have studied the ability of 9-amino-ellipticine to inhibit an enzymatic repair system mimicking base-excision repair, in which E. coli exonuclease III only presents an endonuclease for apurinic/apyrimidinic site activity. 10 microM of 9-amino-ellipticine inhibits 70% of apurinic site repair. Other intercalating agents with similar affinities for DNA do not induce any inhibition. In another system designed for the direct assay of the exonuclease III-induced incisions 5' to AP sites 10 microM of 9-amino-ellipticine inhibits 65% of the endonuclease for apurinic/apyrimidinic site activity of E. coli exonuclease III. The 9-amino-ellipticine-induced formation of a 2',3'-unsaturated deoxyribose and cleavage at the 3' side of the apurinic site, and possible creation of an adduct, as suggested by Bertrand and coworkers (1989), on the 3' position of the deoxyribose seem to strongly inhibit the endonuclease for apurinic/apyrimidinic site activity. 9-Amino-ellipticine appears therefore to be the first small ligand which can inhibit, by an irreversible modification of the substrate, the repair of apurinic sites through the base excision-repair pathway at a pharmacological concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号