首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A gene required for the short-term regulation of photosynthetic light harvesting (the state transition) has been identified in the cyanobacterium Synechocystis sp. PCC6803. The open reading frame is designated sll1926 in the complete Synechocystis gene sequence. The deduced amino acid sequence has no homologues in current sequence databases and no recognizable sequence motifs. It encodes a putative integral membrane protein of 16 kDa, which we have designated RpaC (regulator of phycobilisome association C). Fluorescence measurements of an insertional inactivation mutant of rpaC (Deltasll1926) show that it is specifically unable to perform state transitions. Deltasll1926 has approximately wild-type levels of PS1, PS2 and phycobilisomes. Measurements of oxygen evolution and uptake show Deltasll1926 to have no deficiency in electron transport rates. In vitro [gamma-32P]-ATP labelling experiments suggest that RpaC is not the 15 kDa membrane phosphoprotein previously implicated in state transitions. Deltasll1926 grows more slowly than the wild type only at very low light intensities.  相似文献   

2.
The mechanism of fumarate reduction in Geobacter sulfurreducens was investigated. The genome contained genes encoding a heterotrimeric fumarate reductase, FrdCAB, with homology to the fumarate reductase of Wolinella succinogenes and the succinate dehydrogenase of Bacillus subtilis. Mutation of the putative catalytic subunit of the enzyme resulted in a strain that lacked fumarate reductase activity and was unable to grow with fumarate as the terminal electron acceptor. The mutant strain also lacked succinate dehydrogenase activity and did not grow with acetate as the electron donor and Fe(III) as the electron acceptor. The mutant strain could grow with acetate as the electron donor and Fe(III) as the electron acceptor if fumarate was provided to alleviate the need for succinate dehydrogenase activity in the tricarboxylic acid cycle. The growth rate of the mutant strain under these conditions was faster and the cell yields were higher than for wild type grown under conditions requiring succinate dehydrogenase activity, suggesting that the succinate dehydrogenase reaction consumes energy. An orthologous frdCAB operon was present in Geobacter metallireducens, which cannot grow with fumarate as the terminal electron acceptor. When a putative dicarboxylic acid transporter from G. sulfurreducens was expressed in G. metallireducens, growth with fumarate as the sole electron acceptor was possible. These results demonstrate that, unlike previously described organisms, G. sulfurreducens and possibly G. metallireducens use the same enzyme for both fumarate reduction and succinate oxidation in vivo.  相似文献   

3.
A traditional 2‐oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2‐oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Δsll1981, Δslr0370, Δslr1022 and combinations thereof, deficient in 2‐oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in γ‐aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N‐acetylornithine aminotransferase, encoded by slr1022, was shown to also function as γ‐aminobutyrate aminotransferase, catalysing γ‐aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact γ‐aminobutyrate shunt is present in Synechocystis. The Δsll1981 strain, lacking 2‐oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the Δslr1022 and Δslr0370 strains and the Δsll1981/Δslr1022 and Δsll1981/Δslr0370 double mutants was reduced to 20–40% of that in wild type, suggesting that the γ‐aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2‐oxoglutarate decarboxylase. 13C‐stable isotope analysis indicated that the γ‐aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2‐oxoglutarate decarboxylase bypass, the γ‐aminobutyrate shunt is a major contributor to flux from 2‐oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.  相似文献   

4.
5.
In cyanobacteria many compounds, including chlorophylls, carotenoids, and hopanoids, are synthesized from the isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate. Isoprenoid biosynthesis in extracts of the cyanobacterium Synechocystis strain PCC 6803 grown under photosynthetic conditions, stimulated by pentose phosphate cycle substrates, does not appear to require methylerythritol phosphate pathway intermediates. The sll1556 gene, distantly related to type 2 IPP isomerase genes, was disrupted by insertion of a Kanr cassette. The mutant was fully viable under photosynthetic conditions although impaired in the utilization of pentose phosphate cycle substrates. Compared to the parental strain the Deltasll1556 mutant (i) is deficient in isoprenoid biosynthesis in vitro with substrates including glyceraldehyde-3-phosphate, fructose-6-phosphate, and glucose-6-phosphate; (ii) has smaller cells (diameter ca. 13% less); (iii) has fewer thylakoids (ca. 30% less); and (iv) has a more extensive fibrous outer wall layer. Isoprenoid biosynthesis is restored with pentose phosphate cycle substrates plus the recombinant Sll1556 protein in the Deltasll1556 supernatant fraction. IPP isomerase activity could not be demonstrated for the purified Sll1556 protein under our in vitro conditions. The reduction of thylakoid area and the effect on outer wall layer components are consistent with an impairment of isoprenoid biosynthesis in the mutant, possibly via hopanoid biosynthesis. Our findings are consistent with an alternate metabolic shunt for biosynthesis of isoprenoids.  相似文献   

6.
Rre37 (sll1330) in a cyanobacterium Synechocystis sp. PCC 6803 acts as a regulatory protein for sugar catabolic genes during nitrogen starvation. Low glycogen accumulation in Δrre37 was due to low expression of glycogen anabolic genes. In addition to low 2-oxoglutarate accumulation, normal upregulated expression of genes encoding glutamate synthases (gltD and gltB) as well as accumulation of metabolites in glycolysis (fructose-6-phosphate, fructose-1,6-bisphosphate, and glyceraldehyde-3-phosphate) and tricarboxylic acid (TCA) cycle (oxaloacetate, fumarate, succinate, and aconitate) were abolished by rre37 knockout. Rre37 regulates 2-oxoglutarate accumulation, glycogen accumulation through expression of glycogen anabolic genes, and TCA cycle metabolites accumulation.  相似文献   

7.
1. Three nuclear mutants of Saccharomyces cerevisiae deficient in succinate dehydrogenase have been isolated. Two of these mutants are allelic. 2. The amount of covalently bound flavin of submitochondrial particles of the two allelic mutants is about 14% and that of the third mutant about 50% of the amount in wild-type particles. The turnover number of succinate dehydrogenase of particles is decreased in all mutants. The turnover number of fumarate reductase is increased in the two allelic mutants, but decreased in the third mutant. 3. EPR spectra, measured at 82 degrees K, show that the amplitude of the g equals 1.93 signal in particles of the two allelic mutants is less than 10% of that in wild-type particles. It is concluded that iron-sulphur centres other than those of succinate dehydrogenase make only a negligible contribution to the line at g equals 1.93 in wild-type particles. 4. EPR measurements below 20 degrees K show that the amplitude of the signal at g equals 2.01 detected in oxidized particles is decreased in particles of the two allelic mutants. 5. A signal with lines at g equals 2.027 and g equals 1.933 is detected at low temperatures in all particle preparations, even in those from a cytoplasmic petite mutant. It is suggested that this signal is derived from a contaminant and not from the inner membrane.  相似文献   

8.
Fumarate reductase from Escherichia coli functions both as an anaerobic fumarate reductase and as an aerobic succinate dehydrogenase. A site-directed mutation of E. coli fumarate reductase in which FrdB Pro-159 was replaced with a glutamine or histidine residue was constructed and overexpressed in a strain of E. coli lacking a functional copy of the fumarate reductase or succinate dehydrogenase complex. The consequences of these mutations on bacterial growth, assembly of the enzyme complex, and enzymatic activity were investigated. Both mutations were found to have no effect on anaerobic bacterial growth or on the ability of the enzyme to reduce fumarate compared with the wild-type enzyme. The FrdB Pro-159-to-histidine substitution was normal in its ability to oxidize succinate. In contrast, however, the FrdB Pro-159-to-Gln substitution was found to inhibit aerobic growth of E. coli under conditions requiring a functional succinate dehydrogenase, and furthermore, the aerobic activity of the enzyme was severely inhibited upon incubation in the presence of its substrate, succinate. This inactivation could be prevented by incubating the mutant enzyme complex in an anaerobic environment, separating the catalytic subunits of the fumarate reductase complex from their membrane anchors, or blocking the transfer of electrons from the enzyme to quinones. The results of these studies suggest that the succinate-induced inactivation occurs by the production of hydroxyl radicals generated by a Fenton-type reaction following introduction of this mutation into the [3Fe-4S] binding domain. Additional evidence shows that the substrate-induced inactivation requires quinones, which are the membrane-bound electron acceptors and donors for the succinate dehydrogenase and fumarate reductase activities. These data suggest that the [3Fe-4S] cluster is intimately associated with one of the quinone binding sites found n fumarate reductase and succinate dehydrogenase.  相似文献   

9.
Succinate transport in Rhizobium leguminosarum.   总被引:19,自引:13,他引:6       下载免费PDF全文
The transport of succinate was studied in an effective streptomycin-resistant strain of Rhizobium leguminosarum. High levels of succinate transport occurred when cells were grown on succinate, fumarate, or malate, whereas low activity was found when cells were grown on glucose, sucrose, arabinose, or pyruvate as the sole carbon source. Because of the rapid metabolism of succinate after transport into the cells, a succinate dehydrogenase-deficient mutant was isolated in which intracellular succinate accumulated to over 400 times the external concentration. Succinate transport was completely abolished in the presence of metabolic uncouplers but was relatively insensitive to sodium arsenate. Succinate transport was a saturable function of the succinate concentration, and the apparent Km and Vmax values for transport were determined in both the parent and the succinate dehydrogenase mutant. Malate and fumarate competitively inhibited succinate transport, whereas citrate and malonate had no effect. Succinate transport mutants were isolated by transposon (Tn5) mutagenesis. These mutants were unable to transport succinate or malate and were unable to grow on succinate, malate, or fumarate as the sole carbon source. The mutants grew normally on pyruvate, oxaloacetate, citrate, or arabinose, and revertants isolated on succinate minimal medium had regained the ability to grow on malate and fumarate. From these data, we conclude that R. leguminosarum possesses a C4-dicarboxylic acid transport system which is inducible and mediates the active transport of succinate, fumarate, and malate into the cell.  相似文献   

10.
Analysis of the genome of Synechocystis sp. strain PCC 6803 reveals three open reading frames (slr0851, slr1743, and sll1484) that may code for type 2 NAD(P)H dehydrogenases (NDH-2). The sequence similarity between the translated open reading frames and NDH-2s from other organisms is low, generally not exceeding 30% identity. However, NAD(P)H and flavin adenine dinucleotide binding motifs are conserved in all three putative NDH-2s in Synechocystis sp. strain PCC 6803. The three open reading frames were cloned, and deletion constructs were made for each. An expression construct containing one of the three open reading frames, slr1743, was able to functionally complement an Escherichia coli mutant lacking both NDH-1s and NDH-2s. Therefore, slr0851, slr1743, and sll1484 have been designated ndbA, ndbB, and ndbC, respectively. Strains that lacked one or more of the ndb genes were created in wild-type and photosystem (PS) I-less backgrounds. Deletion of ndb genes led to small changes in photoautotrophic growth rates and respiratory activities. Electron transfer rates into the plastoquinone pool in thylakoids in darkness were consistent with the presence of a small amount of NDH-2 activity in thylakoids. No difference was observed between wild-type and the Ndb-less strains in the banding patterns seen on native gels when stained for either NADH or NADPH dehydrogenase activity, indicating that the Ndb proteins do not accumulate to high levels. A striking phenotype of the PS I-less background strains lacking one or more of the NDH-2s is that they were able to grow at high light intensities that were lethal to the control strain but they retained normal PS II activity. We suggest that the Ndb proteins in Synechocystis sp. strain PCC 6803 are redox sensors and that they play a regulatory role responding to the redox state of the plastoquinone pool.  相似文献   

11.
J. De Kok  J.L.M. Muller  E.C. Slater 《BBA》1975,387(3):441-450
1. Three nuclear mutants of Saccharomyces cerevisiae deficient in succinate dehydrogenase have been isolated. Two of these mutants are allelic.

2. The amount of covalently bound flavin of submitochondrial particles of the two allelic mutants is about 14% and that of the third mutant about 50% of the amount in wild-type particles. The turnover number of succinate dehydrogenase of particles is decreased in all mutants. The turnover number of fumarate reductase is increased in the two allelic mutants, but decreased in the third mutant.

3. EPR spectra, measured at 82 °K, show that the amplitude of the g = 1.93 signal in particles of the two allelic mutants is less than 10% of that in wild-type particles. It is concluded that iron-sulphur centres other than those of succinate dehydrogenase make only a negligible contribution to the line at g = 1.93 in wild-type particles.

4. EPR measurements below 20 °K show that the amplitude of the signal at g = 2.01 detected in oxidized particles is decreased in particles of the two allelic mutants.

5. A signal with lines at g = 2.027 and g = 1.933 is detected at low temperatures in all particle preparations, even in those from a cytoplasmic petite mutant. It is suggested that this signal is derived from a contaminant and not from the inner membrane.  相似文献   


12.
The transport of the tricarboxylic acid cycle C(4)-dicarboxylic acids was studied in both the wild-type strain and tricarboxylic acid cycle mutants of Bacillus subtilis. Active transport of malate, fumarate, and succinate was found to be inducible by these dicarboxylic acids or by precursors to them, whereas glucose or closely related metabolites catabolite-repressed their uptake. l-Malate was found to be the best dicarboxylic acid transport inducer in succinic dehydrogenase, fumarase, and malic dehydrogenase mutants. Succinate and fumarate are accumulated over 100-fold in succinic dehydrogenase and fumarase mutants, respectively, whereas mutants lacking malate dehydrogenase were unable to accumulate significant quantities of the C(4)-dicarboxylic acids. The stereospecificity of this transport system was studied from a comparison of the rates of competitive inhibition of both succinate uptake and efflux in a succinate dehydrogenase mutant by utilizing thirty dicarboxylic acid analogues. The system was specific for the C(4)-dicarboxylic acids of the tricarboxylic acid cycle, neither citrate nor alpha-ketoglutarate were effective competitive inhibitors. Of a wide variety of metabolic inhibitors tested, inhibiors of oxidative phosphorylation and of the formation of proton gradients were the most potent inhibitors of transport. From the kinetics of dicarboxylic acid transport (K(m) approximately 10(-4) M for succinate or fumarate in succinic acid dehydrogenase and fumarase mutants) and from the competitive inhibition studies, it was concluded that an inducible dicarboxylic acid transport system mediates the entry of malate, fumarate, or succinate into B. subtilis. Mutants devoid of alpha-ketoglutarate dehydrogenase were shown to accumulate both alpha-ketoglutarate and glutamate, and these metabolites subsequently inhibited the transport of all the C(4)-dicarboxylic acids, suggesting a regulatory role.  相似文献   

13.
In silico analysis of genome of the cyanobacterium Synechocystis sp. PCC 6803 identified two genes, slr0329 and sll0593, that might participate in glucose (Glc) phosphorylation (www.kazusa.or.jp/cyano). In order to determine the functions of these two genes, we generated deletion mutants, and analyzed their phenotypes and enzymatic activities. In the presence of 10 mM Glc, wild-type (WT) and slr0329 defective strain (M1) grew fast with increased respiratory activity and NADPH production, whereas the sll0593 deletion mutant (M2) failed to show any of the Glc responses. WT and M1 were not significantly different in their glucokinase activity, but M2 had 90% less activity. Therefore, we propose that Sll0593 plays a major role in the phosphorylation of glucose in Synechocystis cells.  相似文献   

14.
Cellular and mitochondrial metabolite levels were measured in yeast TCA cycle mutants (sdh2Δ or fum1Δ) lacking succinate dehydrogenase or fumarase activities. Cellular levels of succinate relative to parental strain levels were found to be elevated ~8-fold in the sdh2Δ mutant and ~4-fold in the fum1Δ mutant, and there was a preferential increase in mitochondrial levels in these mutant strains. The sdh2Δ and fum1Δ strains also exhibited 3-4-fold increases in expression of Cit2, the cytosolic form of citrate synthase that functions in the glyoxylate pathway. Co-disruption of the SFC1 gene encoding the mitochondrial succinate/fumarate transporter resulted in higher relative mitochondrial levels of succinate and in substantial reductions of Cit2 expression in sdh2Δsfc1Δ and fum1Δsfc1Δ strains as compared with sdh2Δ and fum1Δ strains, suggesting that aberrant transport of succinate out of mitochondria mediated by Sfc1 is related to the increased expression of Cit2 in sdh2Δ and fum1Δ strains. A defect (rtg1Δ) in the yeast retrograde response pathway, which controls expression of several mitochondrial proteins and Cit2, eliminated expression of Cit2 and reduced expression of NAD-specific isocitrate dehydrogenase (Idh) and aconitase (Aco1) in parental, sdh2Δ, and fum1Δ strains. Concomitantly, co-disruption of the RTG1 gene reduced the cellular levels of succinate in the sdh2Δ and fum1Δ strains, of fumarate in the fum1Δ strain, and citrate in an idhΔ strain. Thus, the retrograde response is necessary for maintenance of normal flux through the TCA and glyoxylate cycles in the parental strain and for metabolite accumulation in TCA cycle mutants.  相似文献   

15.
Two recombinant plasmid Escherichia coli strains containing amplified fumarate reductase activity converted fumarate to succinate at significantly higher rates and yields than a wild-type E. coli strain. Glucose was required for the conversion of fumarate to succinate, and in the absence of glucose or in cultures with a low cell density, malate accumulated. Two-dimensional gel electrophoretic analysis of proteins from the recombinant DNA and wild-type strains showed that increased quantities of both large and small fumarate reductase subunits were expressed in the recombinant DNA strains.  相似文献   

16.
Two recombinant plasmid Escherichia coli strains containing amplified fumarate reductase activity converted fumarate to succinate at significantly higher rates and yields than a wild-type E. coli strain. Glucose was required for the conversion of fumarate to succinate, and in the absence of glucose or in cultures with a low cell density, malate accumulated. Two-dimensional gel electrophoretic analysis of proteins from the recombinant DNA and wild-type strains showed that increased quantities of both large and small fumarate reductase subunits were expressed in the recombinant DNA strains.  相似文献   

17.
Twenty-seven cold-sensitive mutants of Neurospora crassa were isolated by mutagenesis of wild-type conidia followed by filtration enrichment in complete medium at the nonpermissive temperature (10 C). Zone sedimentation analyses of cytoplasmic ribosomes isolated from the wild-type strain and from 14 of the mutant strains grown at 10 C indicate that one cold-sensitive mutant is defective in ribosome biosynthesis at that temperature: instead of the 2.3:1 mass ratio of 60S:37S ribosomal subunits characteristic of wild type, the mutant strain PJ30201 (called crib-1 for cytoplasmic ribosome biosynthesis) exhibits a mass ratio of approximately 7.2:1. Ribosomal subunits synthesized by strain PJ30201 at 25 C are present in wild-type proportions. The cold-sensitive and ribosomal phenotypes segregate together in tetrads isolated from crosses between strain PJ30201 and the wild type indicating that a single nuclear gene mutation is probably responsible for both mutant phenotypes. The crib-1 locus lies near the centromere in linkage group IV.  相似文献   

18.
19.
Quintuple mutants of Escherichia coli deficient in the C(4)-dicarboxylate carriers of aerobic and anaerobic metabolism (DctA, DcuA, DcuB, DcuC, and the DcuC homolog DcuD, or the citrate/succinate antiporter CitT) showed only poor growth on succinate (or other C(4)-dicarboxylates) under oxic conditions. At acidic pH (pH 6) the mutants regained aerobic growth on succinate, but not on fumarate. Succinate uptake by the mutants could not be saturated at physiological succinate concentrations (< or =5 mM), in contrast to the wild-type, which had a K(m) for succinate of 50 microM and a V(max) of 35 U/g dry weight at pH 6. At high substrate concentrations, the mutants showed transport activities (32 U/g dry weight) comparable to that of the wild-type. In the wild-type using DctA as the carrier, succinate uptake had a pH optimum of 6, whereas succinate uptake in the mutants was maximal at pH 5. In the mutants succinate uptake was inhibited competitively by monocarboxylic acids. Diffusion of succinate or fumarate across phospholipid membranes (liposomes) was orders of magnitude slower than the transport in the wild-type or the mutants. The data suggest that mutants deficient in DctA, DcuA, DcuB, DcuC, DcuD (or CitT) contain a carrier, possibly a monocarboxylate carrier, which is able to transport succinate, but not fumarate, at acidic pH, when succinate is present as a monoanion. Succinate uptake by this carrier was inhibited by addition of an uncoupler. Growth by fumarate respiration (requiring fumarate/succinate antiport) was also lost in the quintuple mutants, and growth was not restored at pH 6. In contrast, the efflux of succinate produced during glucose fermentation was not affected in the mutants, demonstrating that, for succinate efflux, a carrier different from, or in addition to, the known Dcu and CitT carriers is used.  相似文献   

20.
Transmission electron microscopy was used to study the cellular morphologies of a wild-type Rhizobium meliloti strain (L5-30), a nitrogen fixation-ineffective (Fix-) succinate dehydrogenase mutant (Sdh-) strain, and a Fix+ Sdh+ revertant strain within alfalfa nodules and after free-living growth in a minimal medium containing 27 mM mannitol plus 20 mM succinate. The results showed a requirement of succinate dehydrogenase activity for symbiotic differentiation and maintenance of R. meliloti bacteroids within alfalfa nodules and for succinate-induced cellular pleomorphism in free-living cultures. Also, the Sdh- strain had a 3.5-fold lower rate of oxygen consumption in the defined medium than did the wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号