首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We previously demonstrated that an envelope mutant of human immunodeficiency virus type 1 lacking the entire cytoplasmic domain interferes in trans with the production of infectious virus by inclusion of the mutant envelope into the wild-type envelope complex. We also showed that the envelope incorporation into virions is not affected when the wild-type envelope is coexpressed with the mutant envelope. These results suggest that an oligomeric structure of the cytoplasmic domain is functionally required for viral infectivity. To understand whether the cytoplasmic domain of human immunodeficiency virus type 1 transmembrane protein gp41 has the potential to self-assemble as an oligomer, in the present study we fused the coding sequence of the entire cytoplasmic domain at 3' to the Escherichia coli malE gene, which encodes a monomeric maltose-binding protein. The expressed fusion protein was examined by chemical cross-linking, sucrose gradient centrifugation, and gel filtration. The results showed that the cytoplasmic domain of gp41 assembles into a high-ordered structural complex. The intersubunit interaction of the cytoplasmic domain was also confirmed by a mammalian two-hybrid system that detects protein-protein interactions in eucaryotic cells. A cytoplasmic domain fragment expressed in eucaryotic cells was pulled down by glutathione-Sepharose 4B beads via its association with another cytoplasmic domain fragment fused to the C terminus of the glutathione S-transferase moiety. We also found that sequences encompassing the lentiviral lytic peptide-1 and lentiviral lytic peptide-2, which are located within residues 828-856 and 770-795, respectively, play a critical role in cytoplasmic domain self-assembly. Taken together, the results from the present study indicate that the cytoplasmic domain of gp41 by itself is sufficient to assemble into a multimeric structure. This finding supports the hypothesis that a multimeric form of the gp41 cytoplasmic domain plays a crucial role in virus infectivity.  相似文献   

3.
J W Gnann  Jr  J A Nelson    M B Oldstone 《Journal of virology》1987,61(8):2639-2641
Sera from virtually all individuals infected with human immunodeficiency virus contain antibodies against the viral envelope glycoproteins. By using a series of synthetic peptide antigens, we identified an immunodominant domain at amino acid position 598-609 of gp41. The minimal essential epitope is a 7-amino-acid sequence (amino acids 603-609) containing two cysteine residues. Both cysteine residues are required for the antigenic conformation of the sequence, possibly due to creation of a cyclic structure via disulfide bond formation.  相似文献   

4.
A human monoclonal antibody, 41-7 [immunoglobulin G1(kappa)], directed against the transmembrane glycoprotein gp41 of the human immunodeficiency virus type 1 (HIV-1) has been produced by direct fusion of lymph node cells from an HIV-1-infected individual with a human B-lymphoblastoid cell line. The minimal essential epitope for 41-7 was mapped to a conserved seven-amino acid sequence, N-CSGKLIC-C, located within the N-terminal part of gp41. Antibodies blocking the binding of 41-7 could be detected in the serum of all HIV-1-infected individuals tested, irrespective of the stage of the infection. The epitope is located externally to the plasma membrane, and it is accessible to antibody in the native conformation of the glycoprotein. Despite this, no neutralizing activity of 41-7 could be demonstrated in vitro. These data indicate, directly and indirectly, that this immunodominant epitope on gp41, although exposed on the viral surface, elicits antibodies lacking antiviral activity and, hence, should be avoided in future vaccine candidates.  相似文献   

5.
6.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

7.
To examine the role of the glycans of human immunodeficiency virus type 1 transmembrane glycoprotein gp41, conserved glycosylation sites within the env sequence (Asn-621, Asn-630, and Asn-642) were mutated to Gln. The mutated and control wild-type env genes were introduced into recombinant vaccinia virus and used to infect BHK-21 or CD4+ CEM cells. Mutated gp41 appeared as a 35-kDa band in a Western blot (immunoblot), and it comigrated with the deglycosylated form of wild-type gp41. Proteolytic cleavage of the recombinant wild-type and mutant forms of the gp160 envelope glycoprotein precursor was analyzed by pulse-chase experiments and enzyme-linked immunosorbent assay: gp160 synthesis was similar whether cells were infected with control or mutated env-expressing recombinant vaccinia virus, but about 10-fold less cleaved gp120 and gp41 was produced by the mutated construct than the control construct. The rates of gp120-gp41 cleavage at each of the two potential sites appeared to be comparable in the two constructs. By using a panel of antibodies specific for gp41 and gp120 epitopes, it was shown that the overall immunoreactivities of control and mutated gp41 proteins were similar but that reactivity to epitopes at the C and N termini of gp120, as present on gp160 produced by the mutated construct, was enhanced. This was no longer observed for cleaved gp120 in supernatants. Both gp120 proteins, from control and mutated env, were expressed on the cell surface under a cleaved form and could bind to membrane CD4, as determined by quantitative immunofluorescence assay. In contrast, and despite sufficient expression of env products at the cell membrane, gp41 produced by the mutated construct was unable to induce membrane fusion. Therefore, while contradictory results reported in the literature suggest that gp41 individual glycosylation sites are dispensable for the bioactivity and conformation of env products, it appears that such is not the case when the whole gp41 glycan cluster is removed.  相似文献   

8.
The transmembrane glycoprotein (gp41) of human immunodeficiency virus type 1 (HIV-1) has been implicated in the cytopathology observed during HIV infection. The first amino acids located at the amino terminus are involved in membrane fusion and syncytium formation, while sequences located at the carboxy terminus have been predicted to interact with membranes and modify membrane permeability. The HIV-1 gp41 gene has been cloned and expressed in Escherichia coli cells by using pET vectors to analyze changes in membrane permeability produced by this protein. This system is well suited for expressing toxic genes in an inducible manner and for analyzing the function of proteins that modify membrane permeability. gp41 enhances the permeability of the bacterial membrane to hygromycin B despite the low level of expression of this protein. To localize the regions of gp41 responsible for these effects, a number of fragments spanning different portions of gp41 were inducibly expressed in E. coli. Two regions of gp41 were shown to increase membrane permeability: one located at the carboxy terminus, where two highly amphipathic helices have been predicted, and another one corresponding to the membrane-spanning domain. Expression of the central region of gp41 comprising this domain was highly lytic for E. coli cells and increased membrane permeability to a number of compounds. These findings are discussed in the light of HIV-induced cytopathology and gp41 structure.  相似文献   

9.
G Pancino  L Camoin    P Sonigo 《Journal of virology》1995,69(4):2110-2118
In the transmembrane envelope glycoprotein (TM) of lentiviruses, including human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus (FIV), two cysteine residues, conserved in most retroviruses, are thought to form a loop containing five to seven amino acids. These elements make up a B-cell epitope recognized by nearly 100% of sera from infected patients or animals, designated the principal immunodominant domain (PID). The PID amino acid sequences are highly conserved between isolates of the same lentivirus but are unrelated, except for the two cysteines, when divergent lentiviruses are compared. The aim of this study was to analyze the relationship between amino acid sequence in the PID and envelope function. We introduced two kinds of mutations in the PID of FIV: mutations which impeded the formation of a loop and mutations which substituted the sequence of FIV with the corresponding sequences from other lentiviruses, HIV-1, visna virus, and equine infectious anemia virus. We analyzed antibody recognition, processing, and fusogenic properties of the modified envelopes, using two methods of Env expression: a cell-free expression system and transfection of a feline fibroblast cell line with gag-pol-deleted FIV proviruses. Most mutations in the PID of FIV severely affected envelope processing and abolished syncytium formation. Only the chimeric envelope containing the HIV-1 PID sequence was correctly processed and maintained the capacity to induce syncytium formation, although less efficiently than the wild-type envelope. We computed three-dimensional structural models of the PID, which were consistent with mutagenesis data and confirmed the similarity of FIV and HIV-1 PID structures, despite their divergence in amino acid sequence. Considering these results, we discussed the respective importance of selection exerted by functional requirements or host antibodies to explain the observed variations of the PIDs in lentiviruses.  相似文献   

10.
Insertion of four amino acids into various locations within the amino-terminal halves of the human immunodeficiency virus type 1 gp120 or gp41 envelope glycoprotein disrupts the noncovalent association of these two envelope subunits (M. Kowalski, J. Potz, L. Basiripour, T. Dorfman, W. C. Goh, E. Terwilliger, A. Dayton, C. Rosen, W. A. Haseltine, and J. Sodroski, Science 237:1351-1355, 1987). To localize the determinants on the gp120 envelope glycoprotein important for subunit association, amino acids conserved among primate immunodeficiency viruses were changed. Substitution mutations affecting either of two highly conserved regions located at the amino (residues 36 to 45) and carboxyl (residues 491 to 501) ends of the mature gp120 molecule resulted in nearly complete dissociation of the envelope glycoprotein subunits. Partial dissociation phenotypes were observed for some changes affecting residues in the third and fourth conserved gp120 regions. These results suggest that hydrophobic regions at both ends of the gp120 glycoprotein contribute to noncovalent association with the gp41 transmembrane glycoprotein.  相似文献   

11.
Weng Y  Yang Z  Weiss CD 《Journal of virology》2000,74(11):5368-5372
The coiled-coil region of the human immunodeficiency virus type 1 transmembrane protein (gp41) makes up the interior core of the six-helix bundle structure of the gp41 self-assembly domain. We extended our previous study of this domain (Y. Weng and C. D. Weiss, J. Virol. 72:9676-9682, 1998) by analyzing 23 additional mutants at positions that lie at the interface of the interior core and outer helices. We found nine new functional mutants. For most mutants, the activity could be explained by the ability of the modeled mutants to stabilize the six-helix bundle structure. The present study provides insights into the envelope glycoprotein fusion mechanism and information for rational drug and vaccine design.  相似文献   

12.
The charged amino acids near or within the membrane-spanning region of the human immunodeficiency virus type 1 gp41 envelope glycoprotein were altered. Two mutants were defective for syncytium formation and virus replication even though levels of envelope glycoproteins on the cell or virion surface and CD4 binding were comparable to those of the wild-type proteins. Thus, in addition to anchoring the envelope glycoproteins, sequences proximal to the membrane-spanning gp41 region are important for the membrane fusion process.  相似文献   

13.
Chan WE  Wang YL  Lin HH  Chen SS 《Journal of virology》2004,78(10):5157-5169
The biological significance of the presence of a long cytoplasmic domain in the envelope (Env) transmembrane protein gp41 of human immunodeficiency virus type 1 (HIV-1) is still not fully understood. Here we examined the effects of cytoplasmic tail elongation on virus replication and characterized the role of the C-terminal cytoplasmic tail in interactions with the Gag protein. Extensions with six and nine His residues but not with fewer than six His residues were found to severely inhibit virus replication through decreased Env electrophoretic mobility and reduced Env incorporation compared to the wild-type virus. These two mutants also exhibited distinct N glycosylation and reduced cell surface expression. An extension of six other residues had no deleterious effect on infectivity, even though some mutants showed reduced Env incorporation into the virus and/or decreased cell surface expression. We further show that these elongated cytoplasmic tails in a format of the glutathione S-transferase fusion protein still interacted effectively with the Gag protein. In addition, the immediate C terminus of the cytoplasmic tail was not directly involved in interactions with Gag, but the region containing the last 13 to 43 residues from the C terminus was critical for Env-Gag interactions. Taken together, our results demonstrate that HIV-1 Env can tolerate extension at its C terminus to a certain degree without loss of virus infectivity and Env-Gag interactions. However, extended elongation in the cytoplasmic tail may impair virus infectivity, Env cell surface expression, and Env incorporation into the virus.  相似文献   

14.
The N-terminal fusion domain of the HIV-1 gp41 envelope glycoprotein is responsible for initiating the fusion of viral and cellular membranes, leading to the subsequent infection of the host cell by HIV-1. We have investigated the backbone structure and dynamics of the 30 N-terminal residues of HIV-1 gp41 in membrane-mimicking environments using NMR spectroscopy and (15)N- and (15)N,(13)C,(2)H-labeled peptides. Similar (15)N-(1)H HSQC spectra were obtained in a variety of detergents, including SDS, DPC, mixed DPC/SDS, and LPPG micelles, indicating that the peptide structure is not strongly influenced by the type of detergent used. Detailed characterization was carried out in SDS micelles, where the long-term sample stability was found to be optimal. In addition to J-coupling and NOE restraints, a nearly complete set of backbone residual dipolar coupling restraints was recorded for the fusion domain-micelle complex aligned with respect to the magnetic field using a stretched polyacrylamide gel. Backbone amide (15)N spin relaxation and amide hydrogen exchange rates with the solvent were also measured. The ensemble of NMR structures reveals an uninterrupted alpha-helix for the least mobile residues (S(2) > 0.65), Ile-4 to Met-19, with transient helical character extending up to Ala-22. A 12-residue (Ile-4 to Ala-15) segment is fully shielded from solvent, with Gly-3 and Gly-16 found at micelle-solvent interfaces. Residues external to the micelle exhibit enhanced picosecond to nanosecond time scale dynamics relative to the residues buried in the micelle, and their mobility increases with the distance from the micelle.  相似文献   

15.
Truncation of the human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) gp41 cytoplasmic tail (CT) can modulate the fusogenicity of the envelope glycoprotein (Env) on infected cells and virions. However, the CT domains involved and the underlying mechanism responsible for this "inside-out" regulation of Env function are unknown. HIV and SIV CTs are remarkably long and contain amphipathic alpha-helical domains (LLP1, LLP2, and LLP3) that likely interact with cellular membranes. Using a cell-cell fusion assay and a panel of HIV Envs with stop codons at various positions in the CT, we show that truncations of gp41 proximal to the most N-terminal alpha helix, LLP2, increase fusion efficiency and expose CD4-induced epitopes in the Env ectodomain. These effects were not seen with a truncation distal to this domain and before LLP1. Using a dye transfer assay to quantitate fusion kinetics, we found that these truncations produced a two- to fourfold increase in the rate of fusion. These results were observed for X4-, R5-, and dual-tropic Envs on CXCR4- and CCR5-expressing target cells and could not be explained by differences in Env surface expression. These findings suggest that distal to the membrane-spanning domain, an interaction of the gp41 LLP2 domain with the cell membrane restricts Env fusogenicity during Env processing. As with murine leukemia viruses, where cleavage of a membrane-interactive R peptide at the C terminus is required for Env to become fusogenic, this restriction of Env function may serve to protect virus-producing cells from the membrane-disruptive effects of the Env ectodomain.  相似文献   

16.
17.
We characterized the structural forms of the human immunodeficiency virus env-encoded proteins with a panel of monoclonal and polyclonal antibodies. Western blot (immunoblot) assays with antibodies specific for gp41 invariably recognized a major component of 160 kilodaltons and a less intense component of 120 kilodaltons in viral lysates. We demonstrated that these species are noncovalently associated tetramers and trimers of gp41 which represent the native form of this protein in virions. These complexes were stable when boiled in the presence of low concentrations of sodium dodecyl sulfate but were dissociated to gp41 monomers at high sodium dodecyl sulfate concentrations. Moreover, two human monoclonal antibodies preferentially recognized the oligomeric complexes over monomeric gp41 in Western blots, indicating the presence of epitopes recognized by the human immune system on the gp41 multimers which are not efficiently expressed by the dissociated monomers. The demonstration of the existence of multimeric env complexes and the enhanced and altered antigenicity of such multimers may be relevant to the design of subunit and recombinant human immunodeficiency virus env vaccines.  相似文献   

18.
Immunogenic regions of the gp41 transmembrane protein of human immunodeficiency virus type 1 (HIV-1) were previously mapped by examining polyclonal sera from HIV-infected patients and rodent polyclonal and monoclonal antibodies (MAbs) to peptides of gp41. To define the epitopes within these regions to which infected humans respond during the course of infection, the specificity of human MAbs to these regions had to be studied. Using 10 human MAbs identified initially by their reactivity to whole gp41 in HIV-1 lysates, the epitopes within the immunodominant region of gp41 and within a second immunogenic region of gp41 have been mapped. Thus, five MAbs (from five different patients) to the immunodominant domain of gp41 in the vicinity of the cysteines at positions 598 and 604 (hereinafter designated cluster I) reacted with a stretch of 11 amino acids from positions 590 to 600. Four of these five MAbs were reactive with linear epitopes, while one MAb required the conformation conferred by the disulfide bridge between the aforementioned cysteines. Three MAbs to cluster I revealed dissociation constants ranging from 10(-6) to 10(-8) M, depending on the MAb tested and the size of the synthetic or recombinant peptide used in the assay. Five additional MAbs reacted with a second immunogenic region between positions 644 and 663 (designated cluster II). Four of these five MAbs were specific for conformational determinants. Titration of sera from HIV-infected patients showed that there was about 100-fold more antibody to cluster I than to cluster II in patients' sera, confirming the immunodominance of cluster I.  相似文献   

19.
In a natural context, membrane fusion mediated by the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins involves both the exterior envelope glycoprotein (gp120) and the transmembrane glycoprotein (gp41). Perez et al. (J. Virol. 66:4134-4143, 1992) reported that a mutant HIV-1 envelope glycoprotein containing only the signal peptide and carboxyl terminus of the gp120 exterior glycoprotein fused to the complete gp41 glycoprotein was properly cleaved and that the resultant gp41 glycoprotein was able to induce the fusion of even CD4-negative cells. In the studies reported herein, mutant proteins identical or similar to those studied by Perez et al. lacked detectable cell fusion activity. The proteolytic processing of these proteins was very inefficient, and one processed product identified by Perez et al. as the authentic gp41 glycoprotein was shown to contain carboxyl-terminal gp120 sequences. Furthermore, no fusion activity was observed for gp41 glycoproteins exposed after shedding of the gp120 glycoprotein by soluble CD4. Thus, evidence supporting a gp120-independent cell fusion activity for the HIV-1 gp41 glycoprotein is currently lacking.  相似文献   

20.
Human immunodeficiency virus type 1 contains a transmembrane glycoprotein with an unusually long cytoplasmic domain. To determine the role of this domain in virus replication, a series of single nucleotide changes that result in the insertion of premature termination codons throughout the cytoplasmic domain has been constructed. These mutations delete from 6 to 192 amino acids from the carboxy terminus of gp41 and do not affect the amino acid sequence of the regulatory proteins encoded by rev and tat. The effects of these mutations on glycoprotein biosynthesis and function as well as on virus infectivity have been examined in the context of a glycoprotein expression vector and the viral genome. All of the mutant glycoproteins were synthesized, processed, and transported to the cell surface in a manner similar to that of the wild-type glycoprotein. With the exception of mutants that remove the membrane anchor domain, all of the mutant glycoproteins retained the ability to cause fusion of CD4-bearing cells. However, deletion of more than 19 amino acids from the C terminus of gp41 blocked the ability of mutant virions to infect cells. This defect in virus infectivity appeared to be due at least in part to a failure of the virus to efficiently incorporate the truncated glycoprotein. Similar data were obtained for mutations in two different env genes and two different target cell lines. These results indicate that the cytoplasmic domain of gp41 plays a critical role during virus assembly and entry in the life cycle of human immunodeficiency virus type 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号