首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cell-free system derived from Xenopus eggs enables in vitro reproduction of the steps occurring during eukaryotic DNA replication. With a circular single-stranded DNA template, extracts obtained from high-speed centrifugation perform complementary DNA strand synthesis coupled to chromatin assembly. Nucleosomes are formed on the newly replicated DNA and the overall reaction mimics the events occuring during chromosomal replication on the lagging strand at the replication fork. ATP is necessary at all steps examined individually, including RNA priming, elongation of DNA strands and chromatin assembly. Although not required for nucleosome formation, ATP is involved in the correct spacing of nucleosomes and the stability of the assembled chromatin. Replication of double-stranded DNA was observed only with extracts obtained from low-speed centrifugation using demembraned sperm nuclei as substrate. Nuclei are reconstituted around the DNA and then undergo a series of events characteristic of a cell cycle. In contrast, neither DNA elongation or chromatin assembly require formation of the nucleus, and both are independent of the cell cycle.  相似文献   

2.
The role of SV40 large tumor T-antigen in replication of viral DNA is well established, but it is still unclear how T-antigen triggers cellular replication and cell transformation in non-permissive cells. Here, we used Xenopus egg extracts which reproduce most nuclear events linked to the cell cycle in vitro to analyze its interaction with genomic chromatin during the cell cycle. We show that T-antigen associates with chromatin before the nuclear membrane formation, and further demonstrate that the nuclear membrane is not necessary for its import into the nucleus. We show that the interaction of T-antigen with the endogenous chromatin does not occur at replication foci nor at RPA pre-replication centers. Immunoprecipitations as well as sucrose gradient experiments, indicate that the endogenous pool of p53 interacts with T-antigen. In addition, a transient association of both proteins with the nuclear matrix is observed during the ongoing DNA synthesis. These data are discussed in view of the T-antigen and p53 activity during the cell cycle.  相似文献   

3.
A cell-free system from Xenopus eggs mimics the reaction occurring at the eukaryotic replicative fork in vivo when chromatin assembly is coupled to complementary strand synthesis of DNA. DNA synthesis on single-stranded circular DNA promotes supercoiling and the replicated molecule sediments as a discrete nucleoprotein complex. Micrococcal nuclease digestion reveals a characteristic pattern of multiples of 200 bp of DNA. The kinetics of chromatin assembly and DNA synthesis are coincident and both processes occur with a rate comparable with chromosomal replication in vivo in early embryos. The DNA synthesis reaction can be uncoupled from the assembly reaction. Thus, titration of chromatin proteins by preincubation of the extract with double-stranded DNA prevents the supercoiling of replicated DNA without affecting the rate of synthesis. In contrast, chromatin assembly performed on unreplicated double-stranded DNA is a slower process as compared with the assembly coupled to DNA synthesis. Supercoiled molecules are detected after 30 min replication whereas at least 2 h are required to observe the first form I DNA with unreplicated double-stranded DNA. Such a system where chromatin assembly is promoted by DNA synthesis should be valuable for studying the interaction of specific factors with DNA during chromatin assembly at the replicative fork.  相似文献   

4.
《The Journal of cell biology》1993,122(5):993-1002
Xenopus egg extracts treated with the protein kinase inhibitor 6- dimethylaminopurine (6-DMAP) are unable to support the initiation of DNA replication. Nuclei assembled in 6-DMAP extracts behave as though they are in G2, and will not undergo another round of DNA replication until passage through mitosis. 6-DMAP extracts are functionally devoid of a replication factor that modifies chromatin in early G1 before nuclear envelope assembly, but which is itself incapable of crossing the nuclear envelope. This chromatin modification is capable of supporting only a single round of semiconservative replication. The behavior of this replication factor is sufficient to explain why eukaryotic DNA is replicated once and only once in each cell cycle, and conforms to the previous model of a Replication Licensing Factor. Cell cycle analysis shows that this putative Licensing Factor is inactive during metaphase, but becomes rapidly activated on exit from metaphase when it can modify chromatin before nuclear envelope assembly is complete.  相似文献   

5.
Passage through mitosis resets cells for a new round of chromosomal DNA replication [1]. In late mitosis, the pre-replication complex - which includes the origin recognition complex (ORC), Cdc6 and the minichromosome maintenance (MCM) proteins - binds chromatin as a pre-requisite for DNA replication. S-phase-promoting cyclin-dependent kinases (Cdks) and the kinase Dbf4-Cdc7 then act to initiate replication. Before the onset of replication Cdc6 dissociates from chromatin. S-phase and M-phase Cdks block the formation of a new pre-replication complex, preventing DNA over-replication during the S, G2 and M phases of the cell cycle [1]. The nuclear membrane also contributes to limit genome replication to once per cell cycle [2]. Thus, at the end of M phase, nuclear membrane breakdown and the collapse of Cdk activity reset cells for a new round of chromosomal replication. We showed previously that protein kinase A (PKA) activity oscillates during the cell cycle in Xenopus egg extracts, peaking in late mitosis. The oscillations are induced by the M-phase-promoting Cdk [3] [4]. Here, we found that PKA oscillation was required for the following phase of DNA replication. PKA activity was needed from mitosis exit to the formation of the nuclear envelope. PKA was not required for the assembly of ORC2, Cdc6 and MCM3 onto chromatin. Inhibition of PKA activity, however, blocked the release of Cdc6 from chromatin and subsequent DNA replication. These data suggest that PKA activation in late M phase is required for the following S phase.  相似文献   

6.
7.
We demonstrate by immunofluorescence that a 70-kD protein (P70) purified from Xenopus egg extracts is associated with subnuclear foci (about 200) which we propose to be an assembly of DNA pre-replication centers (preRCs). A cDNA encoding this protein reveals that P70 is the Xenopus homologue of replication protein A (RPA also called RF-A). RPA is know to be a cellular, three-subunit single-stranded DNA binding protein, which assists T-antigen in the assembly of the pre-priming complex in the SV40 replication system. The punctated preRCs exist transiently; they form post-mitotically during the period of nuclear membrane breakdown and disappear during ongoing DNA replication. P70 is homogeneously associated with chromatin at the later stages of the S- phase and is displaced from chromatin post replication, so that P70 cannot be detected on mitotic chromosomes. Double-immunofluorescence studies using biotin-dUTP demonstrate that initiation of DNA synthesis is confined to preRCs, resulting in the punctated replication pattern observed previously by others. PreRCs form efficiently on decondensed chromatin in membrane-free egg extracts if ATP and divalent cations are present. Our results suggest that preRCs are composed of an assembly of a large number of pre-initiation replication complexes poised for initiation at discreet subnuclear regions prior to nuclear reconstruction and initiation of DNA synthesis.  相似文献   

8.
Regulation of replication licensing by acetyltransferase Hbo1   总被引:1,自引:0,他引:1       下载免费PDF全文
The initiation of DNA replication is tightly regulated in eukaryotic cells to ensure that the genome is precisely duplicated once and only once per cell cycle. This is accomplished by controlling the assembly of a prereplicative complex (pre-RC) which involves the sequential binding to replication origins of the origin recognition complex (ORC), Cdc6/Cdc18, Cdt1, and the minichromosome maintenance complex (Mcm2-Mcm7, or Mcm2-7). Several mechanisms of pre-RC regulation are known, including ATP utilization, cyclin-dependent kinase levels, protein turnover, and Cdt1 binding by geminin. Histone acetylation may also affect the initiation of DNA replication, but at present neither the enzymes nor the steps involved are known. Here, we show that Hbo1, a member of the MYST histone acetyltransferase family, is a previously unrecognized positive regulatory factor for pre-RC assembly. When Hbo1 expression was inhibited in human cells, Mcm2-7 failed to associate with chromatin even though ORC and Cdc6 loading was normal. When Xenopus egg extracts were immunodepleted of Xenopus Hbo1 (XHbo1), chromatin binding of Mcm2-7 was lost, and DNA replication was abolished. The binding of Mcm2-7 to chromatin in XHbo1-depleted extracts could be restored by the addition of recombinant Cdt1.  相似文献   

9.
Before initiation of DNA replication, origin recognition complex (ORC) proteins, cdc6, and minichromosome maintenance (MCM) proteins bind to chromatin sequentially and form preinitiation complexes. Using Xenopus laevis egg extracts, we find that after the formation of these complexes and before initiation of DNA replication, cdc6 is rapidly removed from chromatin, possibly degraded by a cdk2-activated, ubiquitin-dependent proteolytic pathway. If this displacement is inhibited, DNA replication fails to initiate. We also find that after assembly of MCM proteins into preinitiation complexes, removal of the ORC from DNA does not block the subsequent initiation of replication. Importantly, under conditions in which both ORC and cdc6 protein are absent from preinitiation complexes, DNA replication is still dependent on cdk2 activity. Therefore, the final steps in the process leading to initiation of DNA replication during S phase of the cell cycle are independent of ORC and cdc6 proteins, but dependent on cdk2 activity.  相似文献   

10.
We have characterized Xenopus ISWI, a catalytic subunit of a family of chromatin-remodeling complexes. We show that ISWI is expressed constitutively during development but poorly expressed in adult tissues except oocytes which contain a large store of maternal protein. We further analyzed its localization both in vivo and in vitro in Xenopus cell cycle extracts and identified that ISWI binds to chromatin at the G1-S period. However, its association to chromatin does not require ongoing DNA replication. Immunodepletion of ISWI has no effect on either sperm chromatin decondensation or the kinetics and efficiency of DNA replication. Nucleosome assembly also occurs in ISWI-depleted extracts, but nucleosome spacing is disturbed. From these results, we conclude that ISWI is not necessary for sperm chromatin decondensation and the accelerated rates of DNA replication that characterize early development.  相似文献   

11.
The packaging of the eukaryotic genome into chromatin is likely to be important for the maintenance of genomic integrity. Chromatin structures are assembled onto newly synthesized DNA by the action of chromatin assembly factors, including anti-silencing function 1 (ASF1). To investigate the role of chromatin structure in the maintenance of genomic integrity, we examined budding yeast lacking the histone chaperone Asf1p. We found that yeast lacking Asf1p accumulate in metaphase of the cell cycle due to activation of the DNA damage checkpoint. Furthermore, yeast lacking Asf1p are highly sensitive to mutations in DNA polymerase alpha and to DNA replicational stresses. Although yeast lacking Asf1p do complete DNA replication, they have greatly elevated rates of DNA damage occurring during DNA replication, as indicated by spontaneous Ddc2p-green fluorescent protein foci. The presence of elevated levels of spontaneous DNA damage in asf1 mutants is due to increased DNA damage, rather than the failure to repair double-strand DNA breaks, because asf1 mutants are fully functional for double-strand DNA repair. Our data indicate that the altered chromatin structure in asf1 mutants leads to elevated rates of spontaneous recombination, mutation, and DNA damage foci formation arising during DNA replication, which in turn activates cell cycle checkpoints that respond to DNA damage.  相似文献   

12.
Ying CY  Gautier J 《The EMBO journal》2005,24(24):4334-4344
Eukaryotes have six minichromosome maintenance (MCM) proteins that are essential for DNA replication. The contribution of ATPase activity of MCM complexes to their function in replication is poorly understood. We have established a cell-free system competent for replication in which all MCM proteins are supplied by purified recombinant Xenopus MCM complexes. Recombinant MCM2-7 complex was able to assemble onto chromatin, load Cdc45 onto chromatin, and restore DNA replication in MCM-depleted extracts. Using mutational analysis in the Walker A motif of MCM6 and MCM7 of MCM2-7, we show that ATP binding and/or hydrolysis by MCM proteins is dispensable for chromatin loading and pre-replicative complex (pre-RC) assembly, but is required for origin unwinding during DNA replication. Moreover, this ATPase-deficient mutant complex did not support DNA replication in MCM-depleted extracts. Altogether, these results both demonstrate the ability of recombinant MCM proteins to perform all replication roles of MCM complexes, and further support the model that MCM2-7 is the replicative helicase. These data establish that mutations affecting the ATPase activity of the MCM complex uncouple its role in pre-RC assembly from DNA replication.  相似文献   

13.
Genome amplification (DNA synthesis) is one of the most demanding cellular processes in all proliferative cells. The DNA replication machinery (also known as the replisome) orchestrates genome amplification during S-phase of the cell cycle. Genetic material is particularly vulnerable to various events that can challenge the replisome during its assembly, activation (firing), progression (elongation) and disassembly from chromatin (termination). Any disturbance of the replisome leads to stalling of the DNA replication fork and firing of dormant replication origins, a process known as DNA replication stress. DNA replication stress is considered to be one of the main causes of sporadic cancers and other pathologies related to tissue degeneration and ageing. The mechanisms of replisome assembly and elongation during DNA synthesis are well understood. However, once DNA synthesis is complete, the process of replisome disassembly, and its removal from chromatin, remains unclear. In recent years, a growing body of evidence has alluded to a central role in replisome regulation for the ubiquitin-dependent protein segregase p97, also known as valosin-containing protein (VCP) in metazoans and Cdc48 in lower eukaryotes. By orchestrating the spatiotemporal turnover of the replisome, p97 plays an essential role in DNA replication. In this review, we will summarise our current knowledge about how p97 controls the replisome from replication initiation, to elongation and finally termination. We will also further examine the more recent findings concerning the role of p97 and how mutations in p97 cofactors, also known as adaptors, cause DNA replication stress induced genomic instability that leads to cancer and accelerated ageing. To our knowledge, this is the first comprehensive review concerning the mechanisms involved in the regulation of DNA replication by p97.  相似文献   

14.
Drosophila SUUR (Suppressor of UnderReplication) protein was shown to regulate the DNA replication elongation process in endocycling cells. This protein is also known to be the component of silent chromatin in polyploid and diploid cells. To mark the different cell cycle stages, we used immunostaining patterns of PCNA, the main structural component of replication fork. We demonstrate that SUUR chromatin binding is dynamic throughout the endocyle in Drosophila salivary glands. We observed that SUUR chromosomal localization changed along with PCNA pattern and these proteins largely co-localized during the late S-phase in salivary glands. The hypothesized interaction between SUUR and PCNA was confirmed by co-immunoprecipitation from embryonic nuclear extracts. Our findings support the idea that the effect of SUUR on replication elongation depends on the cell cycle stage and can be mediated through its physical interaction with replication fork.  相似文献   

15.
Rocha W  Verreault A 《FEBS letters》2008,582(14):1938-1949
  相似文献   

16.
17.
Crude extracts of Xenopus eggs are capable of nuclear assembly around chromatin templates or even around protein-free, naked DNA templates. Here the requirements for nuclear assembly around a naked DNA template were investigated. Extracts were separated by ultracentrifugation into cytosol, membrane, and gelatinous pellet fractions. It was found that, in addition to the cytosolic and membrane fractions, a component of the gelatinous pellet fraction was required for the assembly of functional nuclei around a naked DNA template. In the absence of this component, membrane-bound but functionally inert spheres of lambda DNA were formed. Purification of the active pellet factor unexpectedly demonstrated the component to be glycogen. The assembly of functionally active nuclei, as assayed by DNA replication and nuclear transport, required that glycogen be pre-incubated with the lambda DNA and cytosol during the period of chromatin and higher order intermediate formation, before the addition of membranes. Hydrolysis of glycogen with alpha- amylase in the extract blocked nuclear formation. Upon analysis, chromatin formed in the presence of cytosol and glycogen alone appeared highly condensed, reminiscent of the nuclear assembly intermediate described by Newport in crude extracts (Newport, J. 1987. Cell. 48:205- 217). In contrast, chromatin formed from phage lambda DNA in cytosol lacking glycogen formed "fluffy chromatin-like" structures. Using sucrose gradient centrifugation, the highly condensed intermediates formed in the presence of glycogen could be isolated and were now able to serve as nuclear assembly templates in extracts lacking glycogen, arguing that the requirement for glycogen is temporally restricted to the time of intermediate formation and function. Glycogen does not act simply by inducing condensation of the chromatin, since similarly isolated mitotically condensed chromatin intermediates do not form functional nuclei. However, both mitotic and fluffy interphase chromatin intermediates formed in the absence of glycogen can be rescued to form functional nuclei when added to a second extract which contains glycogen. This study presents a novel role for a carbohydrate in nuclear assembly, a role which involves the formation of a particular chromatin intermediate. Potential models for the role of glycogen are discussed.  相似文献   

18.
The mitotic cell cycle in higher eukaryotes is of pivotal importance for organ growth and development. Here, we report that Elongator, an evolutionarily conserved histone acetyltransferase complex, acts as an important regulator of mitotic cell cycle to promote leaf patterning in Arabidopsis. Mutations in genes encoding Elongator subunits resulted in aberrant cell cycle progression, and the altered cell division affects leaf polarity formation. The defective cell cycle progression is caused by aberrant DNA replication and increased DNA damage, which activate the DNA replication checkpoint to arrest the cell cycle. Elongator interacts with proliferating cell nuclear antigen (PCNA) and is required for efficient histone 3 (H3) and H4 acetylation coupled with DNA replication. Levels of chromatin-bound H3K56Ac and H4K5Ac known to associate with replicons during DNA replication were reduced in the mutants of both Elongator and chromatin assembly factor 1 (CAF-1), another protein complex that physically interacts with PCNA for DNA replication-coupled chromatin assembly. Disruptions of CAF-1 also led to severe leaf polarity defects, which indicated that Elongator and CAF-1 act, at least partially, in the same pathway to promote cell cycle progression. Collectively, our results demonstrate that Elongator is an important regulator of mitotic cell cycle, and the Elongator pathway plays critical roles in promoting leaf polarity formation.  相似文献   

19.
Newly replicated DNA is assembled into chromatin through two principle pathways. Firstly, parental nucleosomes segregate to replicated DNA, and are transferred directly to one of the two daughter strands during replication fork passage. Secondly, chromatin assembly factors mediate de-novo assembly of nucleosomes on replicating DNA using newly synthesized and acetylated histone proteins. In somatic cells, chromatin assembly factor 1 (CAF-1) appears to be a key player in assembling new nucleosomes during DNA replication. It provides a molecular connection between newly synthesized histones and components of the DNA replication machinery during the S phase of the cell division cycle.  相似文献   

20.
To elucidate the process of asymmetric division during sporulation of Bacillus subtilis, we have measured changes in cell cycle parameters during the transition from vegetative growth to sporulation. Because the propensity of B. subtilis to grow in chains of cells precludes the use of automated cell-scanning devices, we have developed a fluorescence microscopic method for analyzing cell cycle parameters in individual cells. From the results obtained, and measurements of DNA replication fork elongation rates and the escape time of sporulation from the inhibition of DNA replication, we have derived a detailed time scale for the early morphological events of sporulation which is mainly consistent with the cell cycle changes expected following nutritional downshift. The previously postulated sensitive stage in the DNA replication cycle, beyond which the cell is unable to sporulate without a new cell cycle, could represent a point in the division cycle at which the starved cell cannot avoid attaining the initiation mass for DNA replication and thus embarking on another round of the cell cycle. The final cell cycle event, formation of the asymmetric spore septum, occurs at about the time in the cell cycle at which the uninduced cell would have divided centrally, in keeping with the view that spore septation is a modified version of vegetative division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号