首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uniformly labeled uridine diphosphoglucose (UDP(U-13C)G) was prepared by a two-step enzymatic synthesis. (U-13C) G-6-P was prepared quantitatively by incubating (U-13C) glucose, ATP, MgS04, and hexokinase. UDP(U-13C) Glucose was prepared by incubation of (U-13C)G-6-P with UDPG pyrophosphorylase, phosphoglucomutase, inorganic pyrophosphatase, UTP, and glucose-1, 6-diphosphate in pH 7.5, 100 mM Tris-HCl buffer. After purification over Biogel P-2 and subsequent preparative HPLC, UDP (U-13C)G was obtained in 50% yield. UDP(U-13C)G was characterized by 13C NMR and FAB-MS.  相似文献   

2.
Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and -ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the -ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the -ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially supported by catabolism of [U-13C]isoleucine. In conclusion, i) neuronal and astrocytic TCA cycle metabolism was not inhibited by ammonium and ii) isoleucine may provide the carbon skeleton for synthesis of glutamate/glutamine in the detoxification of ammonium.  相似文献   

3.
Glutamate neurotoxicity is implicated in most neurodegenerative diseases, and in the present study the long-term effects of the glutamate agonist kainic acid (KA) on cerebellar neurons are investigated. Primary cell cultures, mainly consisting of glutamatergic granule neurons, were cultured in medium containing 0.05 or 0.50 mM KA for 7 days and subsequently incubated in medium containing [U-13C]glutamate or [U-13C]glutamine. The amount of protein and number of cells were greatly reduced in cultures exposed to 0.50 mM KA compared to those exposed to 0.05 mM KA. Glutamine consumption was not affected by KA concentration, whereas that of glutamate was decreased by high KA, confirming reduction in glutamate transport reported earlier. Neurons cultured with 0.50 mM KA and incubated with glutamate contained decreased amounts of glutamate, aspartate and GABA compared to those cultured with 0.05 mM KA. Incubation of cells exposed to 0.50 mM KA with glutamine led to an increased amount of glutamate compared to cells exposed to 0.05 mM KA, whereas the intracellular amounts of aspartate and GABA remained unaffected by KA concentration. Furthermore, mitochondrial metabolism of -[U-13C]ketoglutarate derived from [U-13C]glutamate and [U-13C]glutamine was significantly reduced by 0.50 mM KA. The results presented illustrate differential vulnerability to KA and can only be understood in terms of inter- and intracellular compartmentation.  相似文献   

4.
NMR data (1H and 13C chemical shifts, NOEs) on [[U-13C]cyclosporin A bound to cyclophilin B were compared to previously published data on the [U-13C]CsA/CyPA complex [Fesik et al., (1991) Biochemistry 30, 6574–6583]. Despite only 64% sequence identity between CyPA and CyPB, the conformation and active site environment of CsA when bound to CyPA and CyPB are nearly identical as judged by the similarity of the NMR data.  相似文献   

5.
The synthesis and purification of the mono-coenzyme A and mono-carnitine esters of the homologous series of straight-chain even-numbered dicarboxylic acids (C6---C16) is described. The corresponding 3-hydroxyacyl- and 2-enoyl-CoA esters were prepared enzymatically. A reversed-phase high-performance liquid chromatographic (HPLC) system for the analysis of the intact CoA esters is described and their chromatographic behaviour documented. Reversed-phase HPLC systems for the analysis of the 4-bromophenacyl derivatives of the dicarboxylyl-mono-carnitines and the 4-nitrobenzyl derivatives of the free acids are also described. Some preliminary studies of the metabolism of [U-14C]hexadecanedionoyl-mono-CoA by rat liver peroxisomes and rat skeletal muscle mitochondria are describedillustrating the application of these methods.  相似文献   

6.
The mechanism of polyol accumulation in diapausing Bombyx eggs, conversion of [6-14C] glucose-6-phosphate into polyols and other neutral sugars was investigated in in vitro reaction systems. When a crude homogenate or a press juice of the eggs was incubated with [6-14C]glucose-6-P, the labelled trehalose, sorbitol and glycerol accumulated in the reaction mixture. In the press juice incubation system of developing eggs at day 1, 14C-sorbitol was detected in appreciable amounts, but it decreased rapidly with the development of the embryos. When the press juice was prepared from eggs in diapause, the formation of 14C-sorbitol was 3–5 times greater in eggs at early stages (day 2 to day 4) than in developing eggs.  相似文献   

7.
Sucrose synthase (UDP glucose: D-fructose-2-glucosyl transferase, EC 2.4.1.13) was partially purified from wheat ( Triticum aestivum L. cv. San Agustin INTA) leaves and its properties compared with the wheat germ enzyme. The leaf enzyme moved faster in polyacrylamide gel electrophoresis, was more sensitive to SH reagents and crossreacted more slowly with antibody prepared towards the germ enzyme. Kinetic constants were of the same order for all substrates. UDP was a strong inhibitor of the synthesis reaction. MgCl2 stimulated this reaction and partially reversed UDP inhibition. Molecular weight determined by gel filtration was 380 and 370 kdalton for the leaf and germ enzymes respectively. Both enzymes presented forms of higher molecular weight estimated to around 800 and 1000 kdalton. Neither sucrose synthase from leaves nor from germ were affected by fructose 6-P, fructose 1,6—P2, glucose 1—P, glucose 6—P, fructose 2,6—P2 and cAMP.  相似文献   

8.
Biosynthesis of branched glucan by Pestalotiopsis from media containing D-(1-13C)glucose, D-(2-13C)glucose, D-(4-13C)glucose, D-(6-13C)glucose or a mixture of D-(1-13C)glucose and D-(2-13C)glucose was carried out to elucidate biosynthetic mechanism of branched polysaccharides. 13C NMR spectra of the labeled polysaccharides were determined and assigned. Analysis of 13C NMR spectra of glucitol acetates obtained from hydrolysates of the labeled branched polysaccharides indicated that transfer of labeling from C-1 to C-3 and C-6 carbons, from C-2 to C-1, C-3 and C-5 carbons, and from C-6 to C-1 carbon. From the results the percentages of routes via which the polysaccharide is biosynthesized are estimated. They show that the biosynthesis of the polysaccharide via the Embden-Meyerhof pathway and that from lipids and proteins are more active, and the pentose cycle is less active, than in the biosynthesis of cellulose and curdlan. As for the results, labeling at C-6 carbon in the branched polysaccharide cultured from D-(6-13C)glucose was low, compared to that of cellulose and curdlan.  相似文献   

9.
After incubation of glucose-grown mycelium of Puccinia graminis with 2-deoxy-D-[U-14C]glucose, all cellular 14C was present in compounds soluble in 80% (v/v) ethanol. Metabolites identified included 2-deoxyglucitol, and free and phosphorylated forms of 2-deoxyglucose and 2-deoxygluconate. This is the first report of 2-deoxyglucitol as a metabolite of 2-deoxyglucose in any organism, and in P. graminis, this confirms previous proposals that the free D-glucose is directly reduced to D-glucitol in vivo.  相似文献   

10.
Adult Ascaridia galli incorporate label from [U-14C] serine into various intermediates of sphingomyelin synthesis (ketosphinganine, sphinganine, sphingosine, ceramide and sphingomyelin). From the results it is concluded that A. galli possesses the five enzymes involved in sphingomyelin synthesis, namely: serine palmitoyltransferase, 3-ketosphinganine reductase, flavoprotein sphinganine reductase, sphingosine acyltransferase and ceramide choline phosphotransferase.  相似文献   

11.
The variations in δ 13C in both leaf carbohydrates (starch and sucrose) and CO2 respired in the dark from the cotyledonary leaves of Phaseolus vulgaris L. were investigated during a progressive drought. As expected, sucrose and starch became heavier (enriched in 13C) with decreasing stomatal conductance and decreasing p i/ p a during the first half (15 d) of the dehydration cycle. Thereafter, when stomata remained closed and leaf net photosynthesis was near zero, the tendency was reversed: the carbohydrates became lighter (depleted in 13C). This may be explained by increased p i/ p a but other possible explanations are also discussed. Interestingly, the variations in δ 13C of CO2 respired in the dark were correlated with those of sucrose for both well-watered and dehydrated plants. A linear relationship was obtained between δ 13C of CO2 respired in the dark and sucrose, respired CO2 always being enriched in 13C compared with sucrose by ≈ 6‰. The whole leaf organic matter was depleted in 13C compared with leaf carbohydrates by at least 1‰. These results suggest that: (i) a discrimination by ≈ 6‰ occurs during dark respiration processes releasing 13C-enriched CO2; and that (ii) this leads to 13C depletion in the remaining leaf material.  相似文献   

12.
V. Panich 《Human genetics》1973,17(2):169-171
Summary Partially purified G-6-PD from 4 deficient Thai males presenting with acute hemolytic anemia showed low Km G-6-P consumption, and very high consumption of 2d G-6-P, Gal-6-P, and dTPN. DPN consumption was zero. The enzyme had very biphasic pH optimum curve and very low heat stability. Electrophoretic mobility was 103–106% of normal. These properties are very similar to those of G-6-PD Union. The enzyme of these 4 subjects is thus named G-6-PD Union (Thai).
Zusammenfassung Teilweise gereinigtes G-6-PD von 4 Thai-Männern, die wegen einer hämolytischen Anämie zur Behandlung kamen, zeigten eine niedrige km G-6-P, dagegen hohe 2d G-6-P, Gal-6-P und dTPN-Utilisation. DPN-Utilisation was O. Das Enzym zeigte eine starke biphasische pH-Optimum-Kurve und sehr geringe Hitzestabilität. Die elektrophoretische Wanderungsgeschwindigkeit war 103–106% des Normalen. Diese Eigenschaften sind sehr ähnlich denen des G-6-PD-Union. Deshalb wird das Enzym dieser drei Personen als G-6-PD-Union (Thai) bezeichnet.


Supported by U.S. Public Health research grant AM 09805 from the National Institute of Arthritis and Metabolic Diseases and research grant no G3/181/74 from the World Health Organization.  相似文献   

13.
Abstract: Metabolism of [1-13C]glucose was monitored in superfused cerebral cortex slice preparations from 1-, 2-, and 5-week-old rats using 1H-observed/13C-edited (1H{13C}) NMR spectroscopy. The rate of label incorporation into glutamate C-4 did not differ among the three age groups: 0.52–0.67% of total 1H NMR-detected glutamate/min. This was rather unexpected, as oxygen uptake proceeded at 1.1 ± 0.1, 1.9 ± 0.1, and 2.0 ± 0.1 µmol/min/g wet weight in brain slices prepared from 1-, 2-, and 5-week-old animals, respectively. Steady-state glutamate C-4 fractional enrichments in the slice preparations were ∼23% in all age groups. In the acid extracts of slices glutamate C-4 enrichments were smaller, however, in 1- and 2-week-old (17.8 ± 1.7 and 16.8 ± 0.8%, respectively) than in 5-week-old rats (22.7 ± 0.7%) after 75 min of incubation with 5 m M [1-13C]glucose. We add a new assignment to the 1H{13C} NMR spectroscopy, as acetate C-2 was detected in slice preparations from 5-week-old animals. In the acid extracts of slice preparations acetate C-2 was labeled by ∼30% in 5-week-old rats but by 15% in both 1- and 2-week-old animals, showing that the turnover rate was increased in 5-week-old animals. In the extracts 3–4% of the C-6 of N -acetyl-aspartate (NAA; CH3 of the acetyl group) contained label as determined by both NMR and mass spectrometry, which indicated that there was no significant labeling to other carbons in NAA. NAA accumulated label from [1-13C]glucose but not from [2-13C]acetate, and the rate of label incorporation increased by threefold on cerebral maturation.  相似文献   

14.
Sodium salt of a water-soluble, anionic, and monomeric 1:2 complex of Au(I) with a dianion of thiosalicylic acid TSA2−(Hin2TSA) = o-HS(C6H4)COOH) was first prepared and isolated as colorless needle crystals through a stoichiometric reaction of NaAuCl4:H2TSA:NaOH = 1:4:8 molar ratio in aqueous/EtOH solution. In this reaction, TSA2− ligand has played a role of a reducing agent for the starting Au(III) ion and also of donor ligands coordinating to the reduced Au(I). This compound was characterized by complete elemental analyses, TG/DTA, FT-IR, 2D-NMR (1H-1H COSY, 1H-13C HMBC, and 1H-13C HMQC) spectroscopy, and the molmass measurement based on the cryoscopic method. It was shown that this complex was a monomeric species of Au(I) with a formula of Na3[Au(TSA)2]·5H2O in the solid state, but not a polymeric species even in aqueous solution. A full assignment of seven carbon and four proton resonances in the coordinated TSA2− ligand was achieved by the 2D 1H-13C HMBC NMR technique.  相似文献   

15.
Developing grains of pearl millet ( Pennisetum typhoides Burm. S & H cv. PIB 155) were sampled and analyzed for starch and its free-sugar precursors. The activities of invertase, sucrose-ADP (UDP) glucosyl transferase and of α-amylase and β-amylase in relation to the rate of starch accumulation in the developing grain were assayed. By culturing detached ears, the incorporation of 14C from free sugar precursors to starch was studied. The starch content gradually increased until grain maturity. The rate of starch accumulation was maximum around 12 days after anthesis. Around this period, the activities of sucrose-ADP(UDP) glucosyl transferase and α-amylase, β-amylase were also at a peak. Invertase activity was high during the early period of grain development but gradually declined as the grains matured. In the most actively metabolising milky grains, incorporation of 14C from [14C]-sugars to starch was maximum in the mid mid-milky grains. Addition of 20 m M K+ to the culture solution did not affect the incorporation of 14C from supplied sucrose to the free sugar pool and to the starch of the grain, but Mg2+ supply at 20 m M concentration lowered 14C incorporation from exogenous sucrose to grain free sugars, although the utilization of the latter for starch synthesis was enhanced.  相似文献   

16.
为探究高海拔地区的植物碳(C)循环过程与其生境的关系,以生长在高山地区的豆科灌木鬼箭锦鸡儿为研究对象,沿着横跨我国东西部山区的样带采集35个样点的鬼箭锦鸡儿叶片和土壤样品,分析了鬼箭锦鸡儿叶片碳稳定同位素组成(δ13C)、土壤δ13C、叶片和土壤δ13C差值(Δδ13C)在不同采样点的特征及其与气候因子、叶片和土壤元素的关系。结果表明:鬼箭锦鸡儿叶片δ13C的变化范围为-30.9‰~-27.1‰,平均值为-28.4‰,土壤δ13C的变化范围为-26.2‰~-23.2‰,平均值为-25.3‰,Δδ13C的变化范围为2.0‰~7.7‰,平均值为3.1‰;叶片δ13C显著低于土壤δ13C,且随着叶片δ13C增加,土壤δ13C先降低后升高;叶片δ13C与生长季均温和叶片C含量呈显著负相关,土壤δ13C与相对湿度和最暖月均温呈显著负相关,与土壤碳∶氮(C∶N)呈显著正相关,随土壤C含量的增加土壤δ13C先降低后升高,Δδ13C与叶片C含量、土壤C含量和土壤C∶N呈显著正相关;气候因子对叶片δ13C和Δδ13C具有直接影响,同时也通过对叶片和土壤元素的影响,间接导致叶片δ13C、土壤δ13C和Δδ13C的改变。高海拔地区的气候因子、叶片和土壤元素共同影响鬼箭锦鸡儿的C循环过程。  相似文献   

17.
Succinic semialdehyde dehydrogenase (SSADH) catalyzes the NADP-dependent oxidation of succinic semialdehyde to succinate, the final step of the GABA shunt pathway. SSADH deficiency in humans is associated with excessive elevation of GABA and γ-hydroxybutyrate (GHB). Recent studies of SSADH-null mice show that elevated GABA and GHB are accompanied by reduced glutamine, a known precursor of the neurotransmitters glutamate and GABA. In this study, cerebral metabolism was investigated in urethane-anesthetized SSADH-null and wild-type 17-day-old mice by intraperitoneal infusion of [1,6-13C2]glucose or [2-13C]acetate for different periods. Cortical extracts were prepared and measured using high-resolution 1H-[13C] NMR spectroscopy. Compared with wild-type, levels of GABA, GHB, aspartate, and alanine were significantly higher in SSADH-null cortex, whereas glutamate, glutamine, and taurine were lower. 13C Labeling from [1,6-13C2]glucose, which is metabolized in neurons and glia, was significantly lower (expressed as μmol of 13C incorporated per gram of brain tissue) for glutamate-(C4,C3), glutamine-C4, succinate-(C3/2), and aspartate-C3 in SSADH-null cortex, whereas Ala-C3 was higher and GABA-C2 unchanged. 13C Labeling from [2-13C]acetate, a glial substrate, was lower mainly in glutamine-C4 and glutamate-(C4,C3). GHB was labeled by both substrates in SSADH-null mice consistent with GABA as precursor. Our findings indicate that SSADH deficiency is associated with major alterations in glutamate and glutamine metabolism in glia and neurons with surprisingly lesser effects on GABA synthesis.  相似文献   

18.
In order to elucidate the biosynthetic process of cellulose and curdlan, 13C-labeled polysaccharides were biosynthesized by Acetobacter xylinum (IFO 13693) and Agrobacterium sp. (ATCC 31749), from culture media containing -(1-13C)glucose, -(2-13C)glucose, -(4-13C)glucose, or -(6-13C)glucose as the carbon source, and their structures were determined by 13C NMR spectroscopy. The labeling was mainly found in the original position, indicating direct polymerization of introduced glucoses. In addition, the transfer of labeling from C-2 to C-1, C-3 and C-5, from C-4 to C-1, C-2 and C-3, and from C-6 to C-1 was found in celluloses. In curdlan, the transfer of labeling from C-1 to C-3, from C-2 to C-1 and C-3, from C-4 to C-1, C-2 and C-3, and from C-6 to C-1 and C-3 was observed. From analysis of this labeling, the biosynthetic process of cellulose and curdlan was explained as involving six routes. The percentages of each route via which cellulose or curdlan is biosynthesized were estimated for upper (C-1 to C-3) and lower portions (C-4 to C-6) of glucosidic units in the polysaccharides. It is noted that very few polysaccharides are formed via the Embden-Meyerhof pathway. The lower half (C-4 to C-6) structure of introduced glucoses is well preserved in the polysaccharides.  相似文献   

19.
Glycogen synthase I (EC 2.4.1.11) from rat and from rabbit skeletal muscle was phosphorylated in vitro by glycogen synthase kinase 4 (EC 2.7.1.37) to the extent of 0.8 phosphates/subunit. For both phosphorylated enzymes, the activity ratio (activity without glucose 6-P divided by activity with 8 mM glucose 6-P) was 0.8 when determined with low concentrations of glycogen synthase and/or short incubation times. However, the activity ratio was 0.5 with high enzyme concentrations and longer incubation times. It was found that the lower activity ratios result largely from UDP inhibition of activity measured in the absence of glucose 6-P. Inhibition by UDP was much less pronounced for glycogen synthase I, indicating that a major consequence of phosphorylation by glycogen synthase kinase 4 is an increased sensitivity to UDP inhibition.  相似文献   

20.
For the production of α-D-glucose-1-phosphate (G-1-P), α-1,4-D-glucan phosphorylase from Thermus caldophilus GK24 was partially purified to a specific activity of 13 U mg−1 and an enzyme recovery of 15%. The amount of G-1-P reached maximum (18%) when soluble starch was used as substrate, and the smallest substrate for G-1-P formation was maltotriose. The structure of purified G-1-P was confirmed by comparison to 13C-NMR data for an authentic sample. In addition to G-1-P, glucose-6-phosphate (12%) was simultaneously produced when 10 mM maltoheptaose was used as substrate. Journal of Industrial Microbiology & Biotechnology (2000) 24, 89–93. Received 12 May 1999/ Accepted in revised form 29 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号