首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic parameters of a culture of the hydrogen-oxidizing bacterium Ralstonia eutrophagrown on a gas substrate under conditions favoring autotrophic biosynthesis of polyhydroxybutyrate were studied. The following parameters, making it possible to control and optimize the process in industrial situations, were determined: specific rate of substrate consumption, physical properties of the culture medium, and coefficients of heat emission and mass transfer.  相似文献   

2.
Clostridium thermocellum is an anaerobic thermophilic bacterium that produces enthanol from cellulosic substrates. When the organism was grown in continuous culture at dilution rates ranging from 0.04 to 0.25 h-1, growth yields on cellobiose were higher than on glucose, and even higher yields were observed on cellotetraose. However, differences in bacterial yield were much greater at slow growth rates, and it appeared that glucose-grown cells had a fourfold higher (0.41 g substrate/g protein/h) maintenance energy requirement than cellobiose-grown cultures. Cellobiose and glucose were co-utilized in dual substrate continuous culture, and this was in contrast to batch culture experiments which indicated that the organism preferred the disaccharide. These experiments demonstrate that carbohydrate utilization patterns in continuous culture are different from those in batch culture and that submaximal growth rates affect substrate preference and bioenergetic parameters. The mechanisms regulating carbohydrate use may be different in batch versus continuous culture.Published with the approval of the Director of the Kentucky Agricultural Experiment Station as journal article no. 95-07-064.  相似文献   

3.
Studies were carried out for the production of aroma compounds in solid-state fermentation using factorial design and response surface methodology (RSM) experiments. Five agro-industrial residues were evaluated as substrate for cultivating a strain of Kluyveromyces marxianus. The results proved the feasibility of using cassava bagasse and giant palm bran (Opuntia ficus indica) as substrates to produce fruity aroma compounds by the yeast culture. In order to test the influence of the process parameters on the culture to produce volatile compounds, two statistical experimental designs were performed. The parameters studied were initial substrate pH, addition of glucose, cultivation temperature, initial substrate moisture and inoculum size. Using a 2(5) factorial design, addition of glucose and initial pH of the substrate was found statistically significant for aroma compounds production on palm bran. Although this experimental design showed that addition of glucose did not have a significant role with cassava bagasse, 2(2) factorial design revealed that glucose addition was significant at higher concentrations. Head-space analysis of the culture by gas chromatography showed the production of nine and eleven compounds from palm bran and cassava bagasse, respectively, which included alcohols, esters and aldehyde. In both the cases, two compounds remained unidentified and ethyl acetate, ethanol and acetaldehyde were the major compounds produced. Esters produced were responsible for the fruity aroma in both the cases. With palm bran, ethanol was the compound produced in highest concentration, and with cassava bagasse (both supplemented with 10% glucose), ethyl acetate was produced at highest concentration, accumulating 418 and 1395μmoll(-1) head-spaceg(-1) substrate in 72h, respectively.  相似文献   

4.
In the present work, a simple technique is proposed to study the effects of native extracellular matrix (ECM) of one cell type on the properties of other cell types. It is based on a procedure in which, after cells of one type are removed from the substrate, cells of another type are seeded on the same substrate. To obtain preparations of native ECM, cells were removed from the substrate by 0.02% EDTA only, without any proteolytic enzymes. Cells were placed on coverslips in standard Petri dishes and incubated in a culture medium for a time sufficient for adhesion and spreading, but not long enough to undergo mitosis. Up to four coverslips per Petri dish can be incubated, and various combinations of ECM and cell types can be used in one dish. It is important, therefore, that the different "ECM-cell" combinations are present in the same culture medium. For evaluation of ECM effects, the area occupied by the cell on a substrate and the perimeter of the cell were measured, and frequencies of cell distribution were calculated according to these parameters.  相似文献   

5.
It is shown that the mass transfer resistance can significantly distort the linearity of the Lineweaver-Burk plot of the kinetic data for a microbial culture which forms aggregates. For small flocs, the linearity of the Lineweaver-Burk plot is largely retained, but a different slope and intercept will be obtained compared with flocs free from mass transfer resistance. For large flocs, the Lineweaver-Burk plot shows pronounced curvature at high limiting substrate concentrations. Hence, if the true intrinsic kinetic parameters are to be extracted from a highly flocculating microbial culture, sufficient agitation has to be provided to remove the effect of mass transfer resistance. If the behavior of the flocculating microbial culture is to be explored, additional values for some physical parameters, such as the effective diffusion coefficient of the substrate in floc, the floc density, and the mean floc radius, are needed.  相似文献   

6.
Kinetic indices of growth, polyhydroxyalkanoate (PHA) accumulation, and gas exchange were studied in a culture of the carbon monoxide-resistant hydrogen strain Ralstonia eutropha B-5786 grown on a gaseous substrate (GS) obtained by lignite gasification. The GS was shown to be suitable for PHA production. To increase the degree of GS consumption, various modes of gas supply to the culture were tested. Based on the results, an algorithm was developed for calculating and controlling gas-exchange parameters in the PHA-accumulating culture of Ralstonia eutropha, grown on a new GS allowing high polymer yields (up to 75%) and degrees of substrate utilization (up to 90%).  相似文献   

7.
Inhibition kinetics of phenol degradation from unstable steady-state data   总被引:4,自引:0,他引:4  
Multiplicity of steady states of a continuous culture with an inhibitory substrate was used to estimate kinetic parameters under steady-state conditions. A continuous culture of Pseudomonas cepacia G4, using phenol as the sole source of carbon and energy, was overloaded by increasing the dilution rate above the critical dilution rate. The culture was then stabilized in the inhibitory branch by a proportional controller using the carbon dioxide concentration in the reactor exhaust gas as the controlled variable and the dilution rate as the manipulated variable. By variation of the set point, several unstable steady states in the inhibitory branch were investigated and the specific phenol conversion rates calculated. In addition, phenol degradation was investigated under substrate limitation (chemostat operation).The results show that the phenol degradation by P. cepacia can be described by the same set of inhibition parameters under substrate limitation and under high substrate concentrations in the inhibitory branch. Biomass yield and maintenance coefficients were identical. Fitting of the data to various inhibition models resulted in the best fit for the Yano and Koga equation. The well-known Haldane model, which is most often used to describe substrate inhibition by phenol, gave the poorest fit. The described method allows a precise data estimation under steady-state conditions from the maximum of the biological reaction rate up to high substrate concentrations in the inhibitory branch. Inhibition parameter estimation by controlling unstable steady states may thus be useful in avoiding discrepancies between data generated by batch runs and their application to continuous cultures which have been often described in the literature. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 567-576, 1997.  相似文献   

8.
This article presents a simple, unstructured mathematical model describing microbial growth in continuous culture limited by a gaseous substrate. The model predicts constant gas conversion rates and a decreasing biomass concentration with increasing dilution rate. It has been found that the parameters influencing growth are primarily the gas transfer rate and the dilution rate. Furthermore, it is shown that, for correct simulation of growth, the influence of gaseous substrate consumption on the effective gas flow through the system has to be taken into account.Continuous cultures of Methanobacterium thermoautotrophicum were performed at three different gassing rates. In addition to the measurement of the rates of biomass production, product formation, and substrate consumption, microbial heat dissipation was assessed using a reaction calorimeter. For the on-line measurement of the concentration of the growth-limiting substrate, H(2), a specially developed probe has been used. Experimental data from continuous cultures were in good agreement with the model simulations. An increase in gassing rate enhanced gaseous substrate consumption and methane production rates. However, the biomass yield as well as the specific conversion rates remained constant, irrespective of the gassing rate. It was found that growth performance in continuous culture limited by a gaseous substrate is substantially different from "classic" continuous culture in which the limiting substrate is provided by the liquid feed. In this report, the differences between both continuous culture systems are discussed.  相似文献   

9.
An extension of the models developed by Guha and Jaffé (Biotechnol Bioeng [1996] 50:693-699) to describe the phenanthrene biodegradation kinetics for the cultures with variable fractional volumes is presented. Batch experiments were conducted with a culture capable of degrading the phenanthrene using a single culture vessel from which samples were withdrawn over time to monitor the disappearance of phenanthrene. For accurate measurement of phenanthrene concentrations, a sampling procedure designed for quantifying the sorption of phenanthrene onto glassware was also introduced. The Monod parameters were estimated by nonlinear regression analyses of simultaneous solutions to the substrate utilization/volatilization and Monod equations for growth of the cell mass. The results demonstrate that the models were able to be extended to phenanthrene-degrading cultures with variable fractional volumes. When the ratio between sampling volume and volume of the culture medium was relatively small, the parameters obtained were similar to those which would be obtained using constant fractional volumes of culture medium. It was also found that the model's fit to the phenanthrene disappearance data in this study were better than those obtained by Guha and Jaffé, implying that the sorption process of phenanthrene during the sampling period could significantly affect the measurement of phenanthrene concentrations. Failing to account for these losses led to less accurate measurements of substrate concentrations, which in turn resulted in a poor estimation of the parameters. The findings of this study reduce considerably the experimental work necessary in the estimation of Monod kinetic parameters for the purpose of modeling.  相似文献   

10.
The Pronounced differences in performance of a strain of Clostridium acetobutylicum ATCC 824 were analyzed by the method of systems analysis. The mechanism for cellular transport of substrate (glucose), solvents, and acids was studied and mathematically formulated. The systems analysis approach in the treatment of data from culture experiments pointed out the cell membrane malfunction indicated by its altered permeability and reflected in the altered number of active sugar transport sites. Experimental results obtained from the study of the cell uptake of 3-0-methyl glucose (0.7mM) by the "normal culture" and the "retarded culture" confirmed the theoretical predictions regarding a slower transport in the retarded culture. The initial uptake rate and the accumulation coefficient of the sugar in the normal culture were 15.0 and 4.1 times higher, respectively, than those for the retardedculture. Adjustment of the culture pH resulted in further increases in these parameters by factors of 3.0 and 3.5, respectively.  相似文献   

11.
A mixed bacterial culture was adapted to growth on a mixed carbon substrate consisting of the pesticide parathion and its xylene-based formulation. The environmental growth parameters of temperature, pH, and dissolved oxygen concentration were optimized to obtain complete metabolism of parathion from this mixed carbon substrate. This adapted culture grew rapidly (mu = 0.7 per h) on the pesticide formulation at high parathion suspensions (3,000 mg/liter). Carbon utilization from this mixed substrate was strongly dependent on pH. At slightly acidic pH, xylene was preferentially metabolized, whereas at slightly alkaline pH, parathion was preferentially metabolized. Diethylthiophosphoric acid, a metabolite from parathion, and toluic acid, a metabolite from xylene, also influenced the selection of the primary carbon source.  相似文献   

12.
A biochemical scheme for the transformation of wood lignocellulose during enzymatic hydrolysis of polysaccharides and lignin destruction in reactions involving free radicals was developed, and a corresponding mathematical model was constructed. Processing (fermentation) of wood particles by the fungus Panus tigrinus in a submerged culture for producing a biobinder of wood composites--woodchip boards and fiber-boards--is considered. The mathematical model was used to study the technological parameters that influence the production of enzymes and fungal biomass and the level of free radical accumulation in the substrate, i.e., the factors determining the production of the biobinder. The optimal values of these parameters were determined, namely: the specific surface of wood particles, amounting to 2000 cm2/g; processing time of 56 h; and an initial concentration of 3.0 g/l of fungal biomass in the submerged culture.  相似文献   

13.
以东海原甲藻和中肋骨条藻为研究对象,采用室内单种培养和混合培养,设置不同的氮、磷营养条件,研究了不同营养条件对两种微藻的生长状况和种间竞争参数的影响.结果表明:随着氮、磷浓度的增加,两种藻的最大生物量均呈增加趋势,混合培养中两种微藻的比生长率低于单独培养.在混合培养中,生长前期中肋骨条藻是优势种,随着培养时间的延长,东海原甲藻成为优势种,且优势种发生变化的时间与营养条件有关.混合培养中,东海原甲藻拐点出现时间在0.5 ~4.9 d,中肋骨条藻为0~2.6d,东海原甲藻拐点出现时间晚于中肋骨条藻.在各营养条件下,东海原甲藻对中肋骨条藻的竞争抑制参数β均高于中肋骨条藻对东海原甲藻的竞争抑制参数α,当N为128μmol·L-1、P为32 μmol·L-1时,东海原甲藻的竞争能力是中肋骨条藻的3.8倍,两者差异最为明显.  相似文献   

14.
A multistage continuous culture system in which nutrients (or substrate) are supplied in the form of gradients has been studied in the laboratory. Called a gradostat, it consists of several chemostats with adjacent vessels connected. Two mathematical models based on Michaelis-Menten kinetics in a gradostat with two culture vessels and two competing species of microorganisms for the cases where there is a gradient of one limiting substrate and there are opposing gradients of two limiting complementary substrates are investigated. Given the parameters of the system, we can answer the basic question as to which species survive and which do not and determine the limiting values.  相似文献   

15.
An alternative procedure to obtain the parameters of Monod's growth model in batch culture is presented. It is based on the integral kinetic analysis methodology, employs a one-dimensional Golden Section search optimization method and is implemented on a spread-sheet programme. The procedure is discussed in detail and is illustrated by analysis of batch substrate consumption data by an aerobic bacterial consortium.  相似文献   

16.
The influence of mass exchange and cultivation temperature on the synthesis of trypsin inhibitor in the submerged culture of Actinomyces janthinus was studied. Mass exchange parameters of the fermenter varied from 0.72 to 3.7 g O2 l/hr without oxygen limitations, and cultivation temperature ranged from 25 to 34 degrees C. The growth pattern, dynamics of substrate consumption and synthesis of trypsin inhibitor by the culture of Act. janthinus were shown to depend on mass exchange and cultivation temperature. With an increase in mass exchange the inhibitory activity reached maximum earlier but did not rise in its absolute value. With a temperature increase the inhibitory activity grew by 65%.  相似文献   

17.
Batch experiments were conducted to examine the effects of several substrate analogs on the degradation of pentachlorophenol by an enrichment culture of pentachlorophenol-utilizing bacteria. The presence of substrate analogs which were unable to serve as a carbon source for growth of the culture (e.g., 3,5,6,-trichloro-2-pyridinol, 2,4-dichlorophenoxyacetic acid) decreased the rate of pentachlorophenol degradation. The presence of a utilizable substrate analog (e.g., phenol, 2,4,5-trichlorophenol) also inhibited the initial rate of pentachlorophenol degradation; however, the overall removal rate was accelerated due to an increase in cell mass concentration as a result of simultaneous growth on both substrates. These effects were shown to be predicted by a mathematical model based on a modified Monod equation. Kinetic parameters obtained from the results of laboratory studies can be used for further process analysis to define the optimal conditions for the biological treatment of complex mixtures of phenolic compounds.  相似文献   

18.
An extended dynamical model for growth and sporulation of Bacillus thuringiensis subsp. kurstaki in an intermittent fed-batch culture with total cell retention is proposed. This model differs from reported models, by including dynamics for natural death of cells and substrate consumption for cell maintenance. The proposed model uses sigmoid functions to describe these kinetic parameters. Equations for time evolution of substrate, vegetative, sporulated and total cell concentration were taken from previous works. Model parameters were determined from batch experimental data obtained in pilot plant. Parameter identification was developed in two stages: (1) coarse identification using a multivariable optimization with constraints algorithm, (2) fine identification by heuristic fit of model parameters looking for a minimal model error. The proposed model estimates adequate time evolution of the process variables with a mean error of 2.6% on substrate concentration and 6.7% on biomass concentration.  相似文献   

19.
A mathematical model has been considered in which the known equation of McKendrick and Von Foerster for cell age distribution is combined with that for substrate concentration. The dependence of cell division rate on cell age has been taken as a step function. The interrelation between culture parameters describing the substrate consumption and cell division has been found. The shape of cell age distribution as well as the values of substrate and cell concentrations in steady and transient states have been investigated. Stationary regimes at the initial culture state synchronized by ages have been found to be established as damped oscillations and age waves. Under definite conditions the transition from one steady growth regime to another includes sharp single-time age synchronization of the culture.  相似文献   

20.
A biochemical scheme for the transformation of wood lignocellulose during enzymatic hydrolysis of polysaccharides and lignin destruction in reactions involving free radicals was developed, and a corresponding mathematical model was constructed. Processing (fermentation) of wood particles by the fungus Panus tigrinus in a submerged culture for producing a biobinder of wood composites—woodchip boards and fiberboards—is considered. The mathematical model was used to study the technological parameters that influence the production of enzymes and fungal biomass and the level of free radical accumulation in the substrate, i.e., the factors determining the production of the biobinder. The optimal values of these parameters were determined, namely: the specific surface of wood particles, amounting to 2000 cm2/g; processing time of 56 h; and an initial concentration of 3.0 g/l of fungal biomass in the submerged culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号