首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To analyse DNA strand breaks by terminal deoxy(d)-UTP nick-end labelling (TUNEL) in calcified tissues including bones and teeth, it is important to decalcify the tissues first. However, the effects of decalcifying reagents on the integrity of DNA are largely unknown. In the present study, we evaluated the usefulness of various decalcifying reagents including 10% EDTA (pH 7.4), 5% trichloroacetic acid (TCA), 5% formic acid, 5% HCl, 10% nitric acid, Plank–Rychlo's solution, Morse's solution and K-CX solution in TUNEL staining. Mouse maxilla was selected as the experimental system. Apoptotic cells naturally occurring in the epithelium were analysed. Tissues were assessed by soft X-ray imaging to confirm complete decalcification. The time required for decalcification of the tissue was 7 days with 10% EDTA and 2 days with other decalcifiers. Decalcified tissues were stained with Methyl/Green–Pyronine Y or 4, 6-diamidino-2-phenylindole for assessment of DNA integrity. Nuclei of epithelial cells were strongly positive for both dyes after decalcification with 10% EDTA, 5% TCA, Morse's solution and 5% formic acid. The other reagents failed to retain DNA. Our results demonstrated good TUNEL staining of the maxilla treated with 10% EDTA or 5% TCA . Based on the required time for processing and the signal-noise ratio, we recommend 5% TCA as the decalcifying reagent to analyse for DNA strand breaks.  相似文献   

2.
Evidence that 32 S nRNA contains 5.8 S rRNA was provided by studies on specific oligonucleotide sequences of these RNA species. Purified 32P-labeled 5.8 and 28 S rRNA and 32 S RNA were digested with T-1 ribonuclease, and the products were fractionated according to chain length by chromatography on DEAE-Sephadex A-25 at neutral pH. The oligonucleotides in Peak 8 were treated with alkaline phosphatase and the products were separated by two-dimensional electrophoresis on cellulose acetate at pH 3.5 and DEAE-paper in 7% formic acid. Seven unique oligonucleotide markers for 5.8 S rRNA including the methylated octanucleotide A-A-U-U-Gm-G-A-Gp were present in 32 S RNA but were not found in 28 S rRNA, indicating that 5.8 S rRNA is directly derived from the 32 S nucleolar precursor. These studies confirm a maturation pathway for rRNA species in which 32 S nucleolar RNA is a precursor of 5.8 S rRNA as well as 28 S rRNA.  相似文献   

3.
The secondary structure of mouse Ehrlich ascites 18S, 5.8S and 28S ribosomal RNA in situ was investigated by chemical modification using dimethyl sulphate and 1-cyclohexyl-3-(morpholinoethyl) carbodiimide metho-p-toluene sulphonate. These reagents specifically modify unpaired bases in the RNA. The reactive bases were localized by primer extension followed by gel electrophoresis. The three rRNA species were equally accessible for modification i.e. approximately 10% of the nucleotides were reactive. The experimental data support the theoretical secondary structure models proposed for 18S and 5.8/28S rRNA as almost all modified bases were located in putative single-strand regions of the rRNAs or in helical regions that could be expected to undergo dynamic breathing. However, deviations from the suggested models were found in both 18S and 28S rRNA. In 18S rRNA some putative helices in the 5'-domain were extensively modified by the single-strand specific reagents as was one of the suggested helices in domain III of 28S rRNA. Of the four eukaryote specific expansion segments present in mouse Ehrlich ascites cell 28S rRNA, segments I and III were only partly available for modification while segments II and IV showed average to high modification.  相似文献   

4.
A new technique using Sepharose 4B column chromatography for the partial purification of the total messenger RNA population of several animal tissues is described. The column when eluted with 0.1M sodium acetate, pH 5.0, containing. 001M EDTA, resolves a total nucleic acid extract into four major peaks. DNA is eluted at the void volume, followed successively by peaks of 18S ribosomal RNA, 4S transfer RNA and 28S ribosomal RNA. Ribonucleic acid containing mRNA activities is eluted after the DNA peak but immediately before the 18S rRNA peak. Hence the column enables quantitative removal of DNA, 5S RNA, tRNA and 28S rRNA from the majority of total cellular mRNA's. Partial segregation of mRNA's in the column is also demonstrated. The method does not require the isolation of polysomes as the initial procedure in mRNA isolation and is readily adaptable to large scale preparations. One hundred mg of total nucleic acid extracted from whole tissues can be fractionated on a 5 × 100 cm Sepharose 4B column. Recovery of total mRNA activities ranges between 60–70% and purification with respect to the total cell extract is 7 to 8 fold.  相似文献   

5.
An ascorbic acid decalcifying solution was applied to immuno- and affinohistochemical studies on the inner ear. Rat inner ears fixed in 4% paraformaldehyde in PBS or in 2% acetic acid in ethanol solutions were adequately decalcified in an ascorbic acid solution, at a temperature of 4°C. The decalcifying solution was prepared with 1% ascorbic acid and 0.84% sodium chloride in distilled water (pH 2.5–2.6). The decalcification time was in a direct relationship to the specimen calcification. In this study, two neuroactive substances (γ-aminobutyric acid and calcitonin gene-related peptide), neurofilaments, and the galectine endogenous lectin were successfully detected immunohistochemically. Accepted: 20 May 1999  相似文献   

6.
Teeth are among the hardest animal tissues, because they are composed of large amounts of inorganic compounds. Consequently, teeth are difficult to prepare for microscopic examination. Acids and chelating agents traditionally have been used to remove calcium ions. We compared decalcifying agents including strong acids, weak acids, chelating agents, techniques using electric current, agitation and heat. Freshly extracted teeth were fixed and decalcified using formic acid-formalin, formal-nitric acid, formalin-EDTA, Von Ebner’s fluid and Perenyi’s fluid. Three additional techniques including formic acid with agitation, formic acid with heat and formic acid with electric current also were evaluated. Decalcified teeth were evaluated histologically for tissue preservation and staining characteristics. Formic acid with gentle agitation produced the best decalcification overall based on time required for decalcification, ease of sectioning, hard and soft tissue staining and tissue preservation. Our findings support the use of agitation with formic acid decalcification, because it reduces significantly both the time required and the deleterious effects of prolonged immersion.  相似文献   

7.
Effect of heat shock on RNA metabolism in HeLa cells   总被引:14,自引:0,他引:14  
  相似文献   

8.
A specific inhibitor of ribosomal RNA (rRNA) synthesis was partially purified from an acid-soluble fraction of Xenopus laevis blastulae. Effects of this inhibitor on 5S rRNA synthesis of isolated neurula cells of the same species were investigated. The results show that the synthesis of both 5S rRNA and 4S RNA proceeds normally when both 18 and 28S rRNA are almost completely inhibited. Failure of the inhibitor to suppress 5S rRNA synthesis suggests that it plays an important role in the regulation of 18 and 28S rRNA synthesis during development and that the synthesis of 5S rRNA is not coordinated to that of 18 and 28S rRNA.  相似文献   

9.
10.
Total low molecular weight nuclear RNAs of mouse ascites cells have been labeled in vitro and used as probes to search for complementary sequences contained in nuclear or cytoplasmic RNA. From a subset of hybridizing lmw RNAs, two major species of 58,000 and 35,000 mol. wt. have been identified as mouse 5 and 5.8S ribosomal RNA. Mouse 5 and 5.8S rRNA hybridize not only to 18 and 28S rRNA, respectively, but also to nuclear and cytoplasmic poly(A+) RNA. Northern blot analysis and oligo-dT cellulose chromatography have confirmed the intermolecular base-pairing of these two small rRNA sequences to total poly(A+) RNA as well as to purified rabbit globin mRNA. 5 and 5.8S rRNA also hybridize with positive (coding) but not negative (noncoding) strands of viral RNA. Temperature melting experiments have demonstrated that their hybrid stability with mRNA sequences is comparable to that observed for the 5S:18S and 5.8S:28S hybrids. The functional significance of 5 and 5.8S rRNA base-pairing with mRNAs and larger rRNAs is unknown, but these interactions could play important coordinating roles in ribosome structure, subunit interaction, and mRNA binding during translation.  相似文献   

11.
Development of methods based on determining expression of individual genes resulted in the need for large amounts of high quality RNA preparations. It is widely accepted that in intact rRNA the 28S and 18S band ratio must be 2:1. It is not quite clear what is the main cause of lower rRNA bands intensity ratio. It is difficult to isolate RNA with 2:1 28S/18S ratio from RNase-rich and some tumor tissues. At the same time this requirement may be excessive and RNA preparations with lower 28S/18S rRNA ratio may be quite adequate for most techniques of determining gene expression. As demonstrated in this study, the level of a particular RNA may be reliably determined by RT-PCR even in a total RNA that is usually considered as degraded (28S to 18S ratio as low as 0.4), provided that random primer is used in RT. In contrast, the use of the oligo(dT) primer in RT-PCR may lead to underestimation of specific mRNA level in the degraded RNA samples, depending on the distance of amplified fragment from the poly(A) end. A criterion based on average degradation level of a number of reference genes is suggested to discriminate specific RNA degradation from random and unspecific ones.  相似文献   

12.
Shabalina  S. A. 《Molecular Biology》2002,36(3):359-364
The results of computer analysis of complementarity regions in the sequences of E. coli 16S rRNA, mRNAs and tRNAs are reported in this article. The potential regions of intermolecular RNA–RNA hybridization, or clinger fragments, in 16S rRNA, which are complementary to the sites frequently occurring in mRNAs and tRNAs, were found. Major clinger fragments on 16S rRNA are universal for genes that belong to different functional groups. Our results show there are adaptations of the structural organization of the 16S rRNA molecule to messenger and transport RNA sequences. RNA interaction with clinger fragments may contribute to upregulation of the translation process through increasing the local concentration of mRNAs and tRNAs in the vicinity of the ribosome and their proper positioning, as well as decrease the efficiency of translation through nonspecific mRNA–16SrRNA interactions.  相似文献   

13.
The rates of syntheses of 18S and 28S rRNA, 5S RNA, capped mRNA and 4S RNA were determined in isolated cells from pre- and post-gastrular embryos of Xenopus laevis. The rate of rRNA synthesis per nucleolated cell Mas about 0.2 pg/hr, or about 5.5 × 104 molecules/hr at the blastula stage, and this value remained constant in later stages. At the blastula stage, about 30 molecules of 5s RNA, 10 molecules of capped mRNA and 900 molecules of 4S RNA were synthesized per molecule of 18S or 28S rRNA. These values were all greatly reduced during the gastrula stage, and at the neurula stage, one molecule each of 5S RNA and capped mRNA and 10 molecules of 4S RNA were synthesized per molecule of 18S or 28S rRNA.  相似文献   

14.
Summary The incorporation of [3H]-5-uridine into cytoplasmic 18S and 28S ribosomal ribonucleic acid (rRNA) was examined in Colcemid-synchronized strain L cells during G1 and S phases of the cell cycle in the presence of 5×10−5 m uridine, which was determined to be the saturating concentration for this system. The data show that in S phase a significant increase occurs in the level of [3H]-5-uridine incorporation into each rRNA species. During a 90-min exposure period, S phase cells incorporate 3.4 times as much [3H]-5-uridine into 18S rRNA and 1.9 times as much into 28S rRNA as do G1 cells. The time required for maturation of the ribosomal RNA species during G1 and during S phase is the same, with 18S rRNA appearing in the cytoplasm in 20 min and 28S rRNA in 40 min.  相似文献   

15.
16.
T O Sitz  N Banerjee  R N Nazar 《Biochemistry》1981,20(14):4029-4033
Naturally occurring differences in the nucleotide sequences of 5.8S ribosomal ribonucleic acids (rRNAs) from a variety of organisms have been used to study the role of specific nucleotides in the secondary structure and intermolecular interactions of this RNA. Significant differences in the electrophoretic mobilities of free 5.8S RNAs and the thermal stabilities of 5.8S--28S rRNA complexes were observed even in such closely related sequences as those of man, rat, turtle, and chicken. A single base transition from a guanylic acid residue in position 2 in mammalian 5.8S rRNA to an adenylic acid residue in turtle and chicken 5.8S rRNA results both in a more open molecular conformation and in a 5.8S--28S rRNA junction which is 3.5 degrees C more stable to thermal denaturation. Other changes such as the deletion of single nucleotides from either the 5' or the 3' terminals have no detectable effect on these features. The results support secondary structure models for free 5.8S rRNA in which the termini interact to various degrees and 5.8S--28S rRNA junctions in which both termini of the 5.8S molecule interact with the cognate high molecular weight RNA component.  相似文献   

17.
Paddy fields are a significant source of methane and contribute up to 20% of total methane emissions from wetland ecosystems. These inundated, anoxic soils featuring abundant nitrogen compounds and methane are an ideal niche for nitrate-dependent anaerobic methanotrophs. After 2 years of enrichment with a continuous supply of methane and nitrate as the sole electron donor and acceptor, a stable enrichment dominated by ‘Candidatus Methanoperedens nitroreducens’ archaea and ‘Candidatus Methylomirabilis oxyfera’ NC10 phylum bacteria was achieved. In this community, the methanotrophic archaea supplied the NC10 phylum bacteria with the necessary nitrite through nitrate reduction coupled to methane oxidation. The results of qPCR quantification of 16S ribosomal RNA (rRNA) gene copies, analysis of metagenomic 16S rRNA reads, and fluorescence in situ hybridization (FISH) correlated well and showed that after 2 years, ‘Candidatus Methanoperedens nitroreducens’ had the highest abundance of (2.2 ± 0.4 × 108) 16S rRNA copies per milliliter and constituted approximately 22% of the total microbial community. Phylogenetic analysis showed that the 16S rRNA genes of the dominant microorganisms clustered with previously described ‘Candidatus Methanoperedens nitroreducens ANME2D’ (96% identity) and ‘Candidatus Methylomirabilis oxyfera’ (99% identity) strains. The pooled metagenomic sequences resulted in a high-quality draft genome assembly of ‘Candidatus Methanoperedens nitroreducens Vercelli’ that contained all key functional genes for the reverse methanogenesis pathway and nitrate reduction. The diagnostic mcrA gene was 96% similar to ‘Candidatus Methanoperedens nitroreducens ANME2D’ (WP_048089615.1) at the protein level. The ‘Candidatus Methylomirabilis oxyfera’ draft genome contained the marker genes pmoCAB, mdh, and nirS and putative NO dismutase genes. Whole-reactor anaerobic activity measurements with methane and nitrate revealed an average methane oxidation rate of 0.012 mmol/h/L, with cell-specific methane oxidation rates up to 0.57 fmol/cell/day for ‘Candidatus Methanoperedens nitroreducens’. In summary, this study describes the first enrichment and draft genome of methanotrophic archaea from paddy field soil, where these organisms can contribute significantly to the mitigation of methane emissions.  相似文献   

18.
HEp-2 cells were pulse-labeled at different times after infection with herpes simplex virus, and nuclear ribonucleic acid (RNA) and cytoplasmic RNA were examined. The data showed the following: (i) Analysis by acrylamide gel electrophoresis of cytoplasmic RNA of cells infected at high multiplicities [80 to 200 plaque-forming units (PFU)/cell] revealed that ribosomal RNA (rRNA) synthesis falls to less than 10% of control (uninfected cell) values by 5 hr after infection. The synthesis of 4S RNA also declined but not as rapidly, and at its lowest level it was still 20% of control values. At lower multiplicities (20 PFU), the rate of inhibition was slower than at high multiplicities. However, at all multiplicities the rates of inhibition of 18S and 28S rRNA remained identical and higher than that of 4S RNA. (ii) Analysis of nuclear RNA of cells infected at high multiplicities by sucrose density gradient centrifugation showed that the synthesis and methylation of 45S rRNA precursor continued at a reduced but significant rate (ca. 30% of control values) at times after infection when no radioactive uridine was incorporated or could be chased into 28S and 18S rRNA. This indicates that the inhibition of rRNA synthesis after herpesvirus infection is a result of two processes: a decrease in the rate of synthesis of 45S RNA and a decrease in the rate of processing of that 45S RNA that is synthesized. (iii) Hybridization of nuclear and cytoplasmic RNA of infected cells with herpesvirus DNA revealed that a significant proportion of the total viral RNA in the nucleus has a sedimentation coefficient of 50S or greater. The sedimentation coefficient of virus-specific RNA associated with cytoplasmic polyribosomes is smaller with a maximum at 16S to 20S, but there is some rapidly sedimenting RNA (> 28S) here too. (iv) Finally, there was leakage of low-molecular weight (4S) RNA from infected cells, the leakage being approximately three-fold that of uninfected cells by approximately 5 hr after infection.  相似文献   

19.
Control points in eucaryotic ribosome biogenesis   总被引:6,自引:0,他引:6  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号