首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Nitrous oxide (N(2)O) emission from soils is a major contributor to the atmospheric loading of this potent greenhouse gas. It is thought that autotrophic ammonia oxidizing bacteria (AOB) are a significant source of soil-derived N(2)O and a denitrification pathway (i.e. reduction of NO(2) (-) to NO and N(2)O), so-called nitrifier denitrification, has been demonstrated as a N(2)O production mechanism in Nitrosomonas europaea. It is thought that Nitrosospira spp. are the dominant AOB in soil, but little information is available on their ability to produce N(2)O or on the existence of a nitrifier denitrification pathway in this lineage. This study aims to characterize N(2)O production and nitrifier denitrification in seven strains of AOB representative of clusters 0, 2 and 3 in the cultured Nitrosospira lineage. Nitrosomonas europaea ATCC 19718 and ATCC 25978 were analysed for comparison. The aerobically incubated test strains produced significant (P < 0.001) amounts of N(2)O and total N(2)O production rates ranged from 2.0 amol cell(-1) h(-1), in Nitrosospira tenuis strain NV12, to 58.0 amol cell(-1) h(-1), in N. europaea ATCC 19718. Nitrosomonas europaea ATCC 19718 was atypical in that it produced four times more N(2)O than the next highest producing strain. All AOB tested were able to carry out nitrifier denitrification under aerobic conditions, as determined by production of (15)N-N(2)O from applied (15)N-NO(2) (-). Up to 13.5% of the N(2)O produced was derived from the exogenously applied (15)N-NO(2) (-). The results suggest that nitrifier denitrification could be a universal trait in the betaproteobacterial AOB and its potential ecological significance is discussed.  相似文献   

2.
The impact of soil management practices on ammonia oxidizer diversity and spatial heterogeneity was determined in improved (addition of N fertilizer), unimproved (no additions), and semi-improved (intermediate management) grassland pastures at the Sourhope Research Station in Scotland. Ammonia oxidizer diversity within each grassland soil was assessed by PCR amplification of microbial community DNA with both ammonia oxidizer-specific, 16S rRNA gene (rDNA) and functional, amoA, gene primers. PCR products were analysed by denaturing gradient gel electrophoresis, phylogenetic analysis of partial 16S rDNA and amoA sequences, and hybridization with ammonia oxidizer-specific oligonucleotide probes. Ammonia oxidizer populations in unimproved soils were more diverse than those in improved soils and were dominated by organisms representing Nitrosospira clusters 1 and 3 and Nitrosomonas cluster 7 (closely related phylogenetically to Nitrosomonas europaea). Improved soils were only dominated by Nitrosospira cluster 3 and Nitrosomonas cluster 7. These differences were also reflected in functional gene (amoA) diversity, with amoA gene sequences of both Nitrosomonas and Nitrosospira species detected. Replicate 0.5-g samples of unimproved soil demonstrated significant spatial heterogeneity in 16S rDNA-defined ammonia oxidizer clusters, which was reflected in heterogeneity in ammonium concentration and pH. Heterogeneity in soil characteristics and ammonia oxidizer diversity were lower in improved soils. The results therefore demonstrate significant effects of soil management on diversity and heterogeneity of ammonia oxidizer populations that are related to similar changes in relevant soil characteristics.  相似文献   

3.
Comparison of the organization and sequence of the hao (hydroxylamine oxidoreductase) gene clusters from the gammaproteobacterial autotrophic ammonia-oxidizing bacterium (aAOB) Nitrosococcus oceani and the betaproteobacterial aAOB Nitrosospira multiformis and Nitrosomonas europaea revealed a highly conserved gene cluster encoding the following proteins: hao, hydroxylamine oxidoreductase; orf2, a putative protein; cycA, cytochrome c(554); and cycB, cytochrome c(m)(552). The deduced protein sequences of HAO, c(554), and c(m)(552) were highly similar in all aAOB despite their differences in species evolution and codon usage. Phylogenetic inference revealed a broad family of multi-c-heme proteins, including HAO, the pentaheme nitrite reductase, and tetrathionate reductase. The c-hemes of this group also have a nearly identical geometry of heme orientation, which has remained conserved during divergent evolution of function. High sequence similarity is also seen within a protein family, including cytochromes c(m)(552), NrfH/B, and NapC/NirT. It is proposed that the hydroxylamine oxidation pathway evolved from a nitrite reduction pathway involved in anaerobic respiration (denitrification) during the radiation of the Proteobacteria. Conservation of the hydroxylamine oxidation module was maintained by functional pressure, and the module expanded into two separate narrow taxa after a lateral gene transfer event between gamma- and betaproteobacterial ancestors of extant aAOB. HAO-encoding genes were also found in six non-aAOB, either singly or tandemly arranged with an orf2 gene, whereas a c(554) gene was lacking. The conservation of the hao gene cluster in general and the uniqueness of the c(554) gene in particular make it a suitable target for the design of primers and probes useful for molecular ecology approaches to detect aAOB.  相似文献   

4.
5.
The autotrophic ammonia-oxidizing bacteria (AOB), which play an important role in the global nitrogen cycle, assimilate CO(2) by using ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Here we describe the first detailed study of RubisCO (cbb) genes and proteins from the AOB. The cbbLS genes from Nitrosospira sp. isolate 40KI were cloned and sequenced. Partial sequences of the RubisCO large subunit (CbbL) from 13 other AOB belonging to the beta and gamma subgroups of the class Proteobacteria are also presented. All except one of the beta-subgroup AOB possessed a red-like type I RubisCO with high sequence similarity to the Ralstonia eutropha enzyme. All of these new red-like RubisCOs had a unique six-amino-acid insert in CbbL. Two of the AOB, Nitrosococcus halophilus Nc4 and Nitrosomonas europaea Nm50, had a green-like RubisCO. With one exception, the phylogeny of the AOB CbbL was very similar to that of the 16S rRNA gene. The presence of a green-like RubisCO in N. europaea was surprising, as all of the other beta-subgroup AOB had red-like RubisCOs. The green-like enzyme of N. europaea Nm50 was probably acquired by horizontal gene transfer. Functional expression of Nitrosospira sp. isolate 40KI RubisCO in the chemoautotrophic host R. eutropha was demonstrated. Use of an expression vector harboring the R. eutropha cbb control region allowed regulated expression of Nitrosospira sp. isolate 40KI RubisCO in an R. eutropha cbb deletion strain. The Nitrosospira RubisCO supported autotrophic growth of R. eutropha with a doubling time of 4.6 h. This expression system may allow further functional analysis of AOB cbb genes.  相似文献   

6.
7.
Molecular approaches have revealed considerable diversity and uncultured novelty in natural prokaryotic populations, but not direct links between the new genotypes detected and ecosystem processes. Here we describe the influence of the structure of communities of ammonia-oxidizing bacteria on nitrogen cycling in microcosms containing natural and managed grasslands and amended with artificial sheep urine, a major factor determining local ammonia concentrations in these environments. Nitrification kinetics were assessed by analysis of changes in urea, ammonia, nitrite and nitrate concentrations and ammonia oxidizer communities were characterized by analysis of 16S rRNA genes amplified from extracted DNA using ammonia oxidizer-specific primers. In natural soils, ammonia oxidizer community structure determined the delay preceding nitrification, which depended on the relative abundance of two Nitrosospira clusters, termed 3a and 3b. In batch cultures, pure culture and enrichment culture representatives of Nitrosospira 3a were sensitive to high ammonia concentration, while Nitrosospira cluster 3b representatives and Nitrosomonas europaea were tolerant. Delays in nitrification occurred in natural soils dominated by Nitrosospira cluster 3a and resulted from the time required for growth of low concentrations of Nitrosospira cluster 3b. In microcosms dominated by Nitrosospira cluster 3b and Nitrosomonas, no substantial delays were observed. In managed soils, no delays in nitrification were detected, regardless of initial ammonia oxidizer community structure, most probably resulting from higher ammonia oxidizer cell concentrations. The data therefore demonstrate a direct link between bacterial community structure, physiological diversity and ecosystem function.  相似文献   

8.
The first step of nitrification, the oxidation of ammonia to nitrite, is important for reducing eutrophication in freshwater environments when coupled with anammox (anaerobic ammonium oxidation) or denitrification. We analyzed active formerly biofilm-associated aerobic ammonia-oxidizing communities originating from Ammerbach (AS) and Leutra South (LS) stream water (683 ± 550 [mean ± standard deviation] and 16 ± 7 μM NH(4)(+), respectively) that were developed in a flow-channel experiment and incubated under three temperature regimens. By stable-isotope probing using (13)CO(2), we found that members of the Bacteria and not Archaea were the functionally dominant autotrophic ammonia oxidizers at all temperatures under relatively high ammonium loads. The copy numbers of bacterial amoA genes in (13)C-labeled DNA were lower at 30°C than at 13°C in both stream enrichment cultures. However, the community composition of the ammonia-oxidizing bacteria (AOB) in the (13)C-labeled DNA responded differently to temperature manipulation at two ammonium concentrations. In LS enrichments incubated at the in situ temperature (13°C), Nitrosomonas oligotropha-like sequences were retrieved with sequences from Nitrosospira AmoA cluster 4, while the proportion of Nitrosospira sequences increased at higher temperatures. In AS enrichments incubated at 13°C and 20°C, AmoA cluster 4 sequences were dominant; Nitrosomonas nitrosa-like sequences dominated at 30°C. Biofilm-associated AOB communities were affected differentially by temperature at two relatively high ammonium concentrations, implicating them in a potential role in governing contaminated freshwater AOB distributions.  相似文献   

9.
The nitrifying bacterium Nitrosomonas europaea contains three copies of the gene (hao) encoding hydroxylamine oxidoreductase (HAO), the second enzyme in the nitrification pathway which oxidizes NH(2)OH to NO(2)(-). The nucleotide sequences of the hao genes differ by only one nucleotide. Two of the three gene copies have identical promoter sequences, while the third promoter has a different nucleotide sequence. Mutant strains with two of the three copies of hao inactivated were created by insertional inactivation, using DNA cassettes containing kanamycin- and gentamycin-resistance genes. All three double-mutant combinations were obtained. These double mutants were phenotypically identical under the conditions tested. Two of these double mutants were similar to wild-type cells or cells having a single hao copy inactivated regarding growth rates or hydroxylamine-dependent O(2) uptake activity, but had only about 50% of the wild-type level of in vitro HAO activity and hao mRNA. The third hao double mutant had an unstable genotype, resulting in recombination of the gentamycin marker into another copy of hao. The N. europaea genomic sequence was recently completed, revealing the locations of the copies of hao and other nitrification genes. Comparison with the arrangement of hao genes in the closely related strain, Nitrosomonas sp. strain ENI-11, showed a similar organization.  相似文献   

10.
The distribution of nitrifying bacteria of the genera Nitrosomonas, Nitrosospira, Nitrobacter and Nitrospira was investigated in a membrane-bound biofilm system with opposed supply of oxygen and ammonium. Gradients of oxygen, pH, nitrite and nitrate were determined by means of microsensors while the nitrifying populations along these gradients were identified and quantified using fluorescence in situ hybridization (FISH) in combination with confocal laser scanning microscopy. The oxic part of the biofilm which was subjected to high ammonium and nitrite concentrations was dominated by Nitrosomonas europaea -like ammonia oxidizers and by members of the genus Nitrobacter. Cell numbers of Nitrosospira sp. were 1–2 orders of magnitude lower than those of N. europaea . Nitrospira sp. were virtually absent in this part of the biofilm, whereas they were most abundant at the oxic–anoxic interface. In the totally anoxic part of the biofilm, cell numbers of all nitrifiers were relatively low. These observations support the hypothesis that N. europaea and Nitrobacter sp. can out-compete Nitrosospira and Nitrospira spp. at high substrate and oxygen concentrations. Additionally, they suggest microaerophilic behaviour of yet uncultured Nitrospira sp. as a factor of its environmental competitiveness.  相似文献   

11.
The population of ammonia-oxidizing bacteria in a temperate oligotrophic freshwater lake was analyzed by recovering 16S ribosomal DNA (rDNA) from lakewater and sediment samples taken throughout a seasonal cycle. Nitrosospira and Nitrosomonas 16S rRNA genes were amplified in a nested PCR, and the identity of the products was confirmed by oligonucleotide hybridization. Nitrosospira DNA was readily identified in all samples, and nitrosomonad DNA of the Nitrosomonas europaea-Nitrosomonas eutropha lineage was also directly detected, but during the summer months only. Phylogenetic delineation with partial (345 bp) 16S rRNA gene sequences of clones obtained from sediments confirmed the fidelity of the amplified nitrosomonad DNA and identified two sequence clusters closely related to either N. europaea or N. eutropha that were equated with the littoral and profundal sediment sites, respectively. Determination of 701-bp sequences for 16S rDNA clones representing each cluster confirmed this delineation. A PCR-restriction fragment length polymorphism (RFLP) system was developed that enabled identification of clones containing N. europaea and N. eutropha 16S rDNA sequences, including subclasses therein. It proved possible to analyze 16S rDNA amplified directly from sediment samples to determine the relative abundance of each species compared with that of the other. N. europaea and N. eutropha are very closely related, and direct evidence for their presence in lake systems is limited. The correlation of each species with a distinct spatial location in sediment is an unusual example of niche adaptation by two genotypically similar bacteria. Their occurrence and relative distribution can now be routinely monitored in relation to environmental variation by the application of PCR-RFLP analysis.  相似文献   

12.
The link between similarity in amino acid sequence for ammonia monooxygenase (AMO) and isotopic discrimination for ammonia oxidation ( l AMO ) was investigated in g -subdivision ammonia-oxidizing bacteria. The isotope effects for ammonia oxidation in pure cultures of the nitrifying strains Nitrosomonas marina , Nitrosomonas C-113a, Nitrosospira tenuis , Nitrosomonas europaea , and Nitrosomonas eutropha ranged from 14.2 to 38.2. The differences in isotope effects could not be readily explained by differential rates of ammonia oxidation, transport of NH 4 + , or accumulation of NH 2 OH or N 2 O among the strains. The major similarities and differences observed in l AMO are, however, paralleled by similarities and differences in amino acid sequences for the f -subunit of AMO (AmoA). Robust differences in l AMO among nitrifying bacteria may be expected to influence the stable isotopic signatures of nitrous oxide (N 2 O) produced in various environments.  相似文献   

13.
To determine whether the distribution of estuarine ammonia-oxidizing bacteria (AOB) was influenced by salinity, the community structure of betaproteobacterial ammonia oxidizers (AOB) was characterized along a salinity gradient in sediments of the Ythan estuary, on the east coast of Scotland, UK, by denaturant gradient gel electrophoresis (DGGE), cloning and sequencing of 16S rRNA gene fragments. Ammonia-oxidizing bacteria communities at sampling sites with strongest marine influence were dominated by Nitrosospira cluster 1-like sequences and those with strongest freshwater influence were dominated by Nitrosomonas oligotropha-like sequences. Nitrosomonas sp. Nm143 was the prevailing sequence type in communities at intermediate brackish sites. Diversity indices of AOB communities were similar at marine- and freshwater-influenced sites and did not indicate lower species diversity at intermediate brackish sites. The presence of sequences highly similar to the halophilic Nitrosomonas marina and the freshwater strain Nitrosomonas oligotropha at identical sampling sites indicates that AOB communities in the estuary are adapted to a range of salinities, while individual strains may be active at different salinities. Ammonia-oxidizing bacteria communities that were dominated by Nitrosospira cluster 1 sequence types, for which no cultured representative exists, were subjected to stable isotope probing (SIP) with 13C-HCO3-, to label the nucleic acids of active autotrophic nitrifiers. Analysis of 13C-associated 16S rRNA gene fragments, following CsCl density centrifugation, by cloning and DGGE indicated sequences highly similar to the AOB Nitrosomonas sp. Nm143 and Nitrosomonas cryotolerans and to the nitrite oxidizer Nitrospira marina. No sequence with similarity to the Nitrosospira cluster 1 clade was recovered during SIP analysis. The potential role of Nitrosospira cluster 1 in autotrophic ammonia oxidation therefore remains uncertain.  相似文献   

14.
Communities of ammonia-oxidizing bacteria (AOB) were characterized in two acidic soil sites experimentally subjected to varying levels of nitrogen and sulphur deposition. The sites were an acidic spruce forest soil in Deepsyke, Southern Scotland, with low background deposition, and a nitrogen-saturated upland grass heath in Pwllpeiran, North Wales. Betaproteobacterial ammonia-oxidizer 16S rRNA and ammonia monooxygenase (amoA) genes were analysed by cloning, sequencing and denaturing gradient gel electrophoresis (DGGE). DGGE profiles of amoA and 16S rRNA gene fragments from Deepsyke soil in 2002 indicated no effect of nitrogen deposition on AOB communities, which contained both Nitrosomonas europaea and Nitrosospira. In 2003, only Nitrosospira could be detected, and no amoA sequences could be retrieved. These results indicate a decrease in the relative abundance of AOB from the year 2002 to 2003 in Deepsyke soil, which may be the result of the exceptionally low rainfall in spring 2003. Nitrosospira-related sequences from Deepsyke soil grouped in all clusters, including cluster 1, which typically contains only sequences from marine environments. In Pwllpeiran soil, 16S rRNA gene libraries were dominated by nonammonia oxidizers and no amoA sequences were detectable. This indicates that autotrophic AOB play only a minor role in these soils even at high nitrogen deposition.  相似文献   

15.
Culture enrichments and culture-independent molecular methods were employed to identify and confirm the presence of novel ammonia-oxidizing bacteria (AOB) in nitrifying freshwater aquaria. Reactors were seeded with biomass from freshwater nitrifying systems and enriched for AOB under various conditions of ammonia concentration. Surveys of cloned rRNA genes from the enrichments revealed four major strains of AOB which were phylogenetically related to the Nitrosomonas marina cluster, the Nitrosospira cluster, or the Nitrosomonas europaea-Nitrosococcus mobilis cluster of the beta subdivision of the class Proteobacteria. Ammonia concentration in the reactors determined which AOB strain dominated in an enrichment. Oligonucleotide probes and PCR primer sets specific for the four AOB strains were developed and used to confirm the presence of the AOB strains in the enrichments. Enrichments of the AOB strains were added to newly established aquaria to determine their ability to accelerate the establishment of ammonia oxidation. Enrichments containing the Nitrosomonas marina-like AOB strain were most efficient at accelerating ammonia oxidation in newly established aquaria. Furthermore, if the Nitrosomonas marina-like AOB strain was present in the original enrichment, even one with other AOB, only the Nitrosomonas marina-like AOB strain was present in aquaria after nitrification was established. Nitrosomonas marina-like AOB were 2% or less of the cells detected by fluorescence in situ hybridization analysis in aquaria in which nitrification was well established.  相似文献   

16.
Pulsed-field gel electrophoresis of PmeI digests of the Nitrosomonas sp. strain ENI-11 chromosome produced four bands ranging from 1,200 to 480 kb in size. Southern hybridizations suggested that a 487-kb PmeI fragment contained two copies of the amoCAB genes, coding for ammonia monooxygenase (designated amoCAB(1) and amoCAB(2)), and three copies of the hao gene, coding for hydroxylamine oxidoreductase (hao(1), hao(2), and hao(3)). In this DNA fragment, amoCAB(1) and amoCAB(2) were about 390 kb apart, while hao(1), hao(2), and hao(3) were separated by at least about 100 kb from each other. Interestingly, hao(1) and hao(2) were located relatively close to amoCAB(1) and amoCAB(2), respectively. DNA sequence analysis revealed that hao(1) and hao(2) shared 160 identical nucleotides immediately upstream of each translation initiation codon. However, hao(3) showed only 30% nucleotide identity in the 160-bp corresponding region.  相似文献   

17.
Nitric oxide (NO) and nitrous oxide (N2O) are climatically important trace gases that are produced by both nitrifying and denitrifying bacteria. In the denitrification pathway, N2O is produced from nitric oxide (NO) by the enzyme nitric oxide reductase (NOR). The ammonia-oxidizing bacterium Nitrosomonas europaea also possesses a functional nitric oxide reductase, which was shown recently to serve a unique function. In this study, sequences homologous to the large subunit of nitric oxide reductase (norB) were obtained from eight additional strains of ammonia-oxidizing bacteria, including Nitrosomonas and Nitrosococcus species (i.e., both beta- and gamma-Proteobacterial ammonia oxidizers), showing widespread occurrence of a norB homologue in ammonia-oxidizing bacteria. However, despite efforts to detect norB homologues from Nitrosospira strains, sequences have not yet been obtained. Phylogenetic analysis placed nitrifier norB homologues in a subcluster, distinct from denitrifier sequences. The similarities and differences of these sequences highlight the need to understand the variety of metabolisms represented within a "functional group" defined by the presence of a single homologous gene. These results expand the database of norB homologue sequences in nitrifying bacteria.  相似文献   

18.
Nitrosomonas europaea uses only NH(3), CO(2) and mineral salts for growth and as such it is an obligate chemo-lithoautotroph. The oxidation of NH(3) is a two-step process catalyzed by ammonia monooxygenase (AMO) and hydroxylamine oxidoreductase (HAO). AMO catalyzes the oxidation of NH(3) to NH(2)OH and HAO catalyzes the oxidation of NH(2)OH to NO(2)(-). AMO is a membrane-bound enzyme composed of three subunits. HAO is located in the periplasm and is a homotrimer with each subunit containing eight c-type hemes. The electron flow from HAO is channeled through cytochrome c(554) to cytochrome c(m552), where it is partitioned for further utilization. Among the ammonia-oxidizing bacteria, the genes for AMO, these cytochromes, and HAO are present in up to three highly similar copies. Mutants with mutations in the copies of amoCAB and hao in N. europaea have been isolated. All of the amoCAB and hao gene copies are functional. N. europaea was selected by the United States Department of Energy for a whole-genome sequencing project. In this article, we review recent research on the molecular biology and biochemistry of NH(3) oxidation in nitrifiers.  相似文献   

19.
The intramolecular distribution of nitrogen isotopes in N2O is an emerging tool for defining the relative importance of microbial sources of this greenhouse gas. The application of intramolecular isotopic distributions to evaluate the origins of N2O, however, requires a foundation in laboratory experiments in which individual production pathways can be isolated. Here we evaluate the site preferences of N2O produced during hydroxylamine oxidation by ammonia oxidizers and by a methanotroph, ammonia oxidation by a nitrifier, nitrite reduction during nitrifier denitrification, and nitrate and nitrite reduction by denitrifiers. The site preferences produced during hydroxylamine oxidation were 33.5 +/- 1.2 per thousand, 32.5 +/- 0.6 per thousand, and 35.6 +/- 1.4 per thousand for Nitrosomonas europaea, Nitrosospira multiformis, and Methylosinus trichosporium, respectively, indicating similar site preferences for methane and ammonia oxidizers. The site preference of N2O from ammonia oxidation by N. europaea (31.4 +/- 4.2 per thousand) was similar to that produced during hydroxylamine oxidation (33.5 +/- 1.2 per thousand) and distinct from that produced during nitrifier denitrification by N. multiformis (0.1 +/- 1.7 per thousand), indicating that isotopomers differentiate between nitrification and nitrifier denitrification. The site preferences of N2O produced during nitrite reduction by the denitrifiers Pseudomonas chlororaphis and Pseudomonas aureofaciens (-0.6 +/- 1.9 per thousand and -0.5 +/- 1.9 per thousand, respectively) were similar to those during nitrate reduction (-0.5 +/- 1.9 per thousand and -0.5 +/- 0.6 per thousand, respectively), indicating no influence of either substrate on site preference. Site preferences of approximately 33 per thousand and approximately 0 per thousand are characteristic of nitrification and denitrification, respectively, and provide a basis to quantitatively apportion N2O.  相似文献   

20.
Abstract The gene encoding ammonia monooxygenase subunit A (AmoA) was found in three copies in the genome of the chemolithotrophic soil bacterium, Nitrosospira sp. NpAV. The open reading frame and flanking regions of the three copies were isolated from digested and size fractionated genomic DNA using oligodeoxyribonucleotide primers and polymerase chain reaction. The three gene copies of amoA were sequenced and the sequences compared to each other. The open reading frames and the upstream and downstream flanking regions were nearly identical in the three copies. All three copies were expressed in recombinant Escherichia coli strains from the indigenous promoter producing a product of approximately 30 kDa. All amoA copies encode 274 amino acid polypeptides which have similarity to the ammonia monooxygenase acetylene-binding protein from Nitrosomonas europaea .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号